Ir al contenido

Documat


Two Bifurcation Sets of Expansive Lorenz Maps with a Hole at the Discontinuity

  • Yun Sun [1] ; Bing Li [1]
    1. [1] South China University of Technology

      South China University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Consider an expansive Lorenz map f defined on I = [0, 1] and let c be its discontinuity. The survivor set under consideration is represented as S+ f (a, b) := {x ∈ I : f (b) ≤ f n(x) ≤ f (a), ∀ n ≥ 0}, where (a, b) ⊆ I satisfies a ≤ c ≤ b and a = b. We mainly study the following two bifurcation sets related to survivor set and its topological entropy htop:

      E f (a) := {b ≥ c : S+ f (a, ) = S+ f (a, b), ∀ > b}, and B f (a) := {b ≥ c : htop( f |S+ f (a,)) = htop( f |S+ f (a,b)), ∀ > b}.

      By utilizing combinatorial renormalization techniques, we give the kneading sequence s of the endpoints of the platform P(b) := {b ≥ c : htop( f |S+ f (a,b )) = htop( f |S+ f (a,b))}.

      Moreover, we obtain a sufficient and necessary condition for when E f (a) = B f (a), extending the results of Baker and Kong (2020), Allaart and Kong (2023).

  • Referencias bibliográficas
    • 1. Allaart, P., Kong, D.: Entropy plateaus, transitivity and bifurcation sets for the β-transformation with a hole at 0 arXiv math.DS arXiv:2304.06892...
    • 2. Baker, S., Kong, D.: Two bifurcation sets arising from the beta transformation with a hole at 0. Indag. Math. (N.S.) 31, 436–449 (2020)
    • 3. Barnsley, M., Steiner, W., Vince, A.: Critical itineraries of maps with constant slope and one discontinuity. Math. Proc. Cambridge Philos....
    • 4. Cui, H., Ding, Y.: Renormalization and conjugacy of piecewise linear Lorenz maps. Adv. Math. 271, 235–272 (2015)
    • 5. de Melo, W., van Strien, S.: One-dimensional dynamics. Springer, Berlin (1993)
    • 6. Ding, Y.: Renormalization and α-limit set for expanding Lorenz maps. Discrete Contin. Dyn. Syst. 29, 979–999 (2011)
    • 7. Ding, Y., Sun, Y.: Complete invariants and parametrization of expansive Lorenz maps arXiv math.DS arXiv:2103.16979 (2021)
    • 8. Glendinning, P.: Topological conjugation of Lorenz maps by β-transformations.Math. Proc. Cambridge Philos. Soc. 107, 401–413 (1990)
    • 9. Glendinning, P., Hall, T.: Zeros of the kneading invariant and topological entropy for Lorenz maps. Nonlinearity 9, 999–1014 (1996)
    • 10. Glendinning, P., Sparrow, C.: Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps. Phys. D 62, 22–50...
    • 11. Hubbard, J., Sparrow, C.: The classification of topologically expansive Lorenz maps. Comm. Pure Appl. Math. 43, 431–443 (1990)
    • 12. Kalle, C., Kong, D., Langeveld, N., Li, W.: The β-transformation with a hole at 0. Ergod. Th. & Dynam. Sys. 40, 2482–2514 (2020)
    • 13. Langeveld, N., Samuel, T.: Intermediate β-shifts as greedy β-shifts with a hole. Acta Math. Hungar. 170, 269–301 (2023)
    • 14. Milnor, J., Thurston, W.: On iterated maps of the interval Lecture Notes in Mathematics 1342. Springer, Berlin (1988)
    • 15. Morse, M., Hedlund, G.: Symbolic dynamics. Amer. J. Math. 60, 815–866 (1938)
    • 16. Raith, P.: Continuity of the Hausdorff dimension for invariant subsets of interval maps. Acta Math. Univ. Comenian. (N.S.) 63, 39–53 (1994)
    • 17. Sun, Y., Li, B., Ding, Y.: Fiber denseness of intermediate β-shifts of finite type. Nonlinearity 36, 5973–5997 (2023)
    • 18. Sun, Y., Li, B., Ding, Y.: Topological expansive Lorenz maps with a hole at critical point. J. Stat. Phys. 191, 1–20 (2024)
    • 19. Urba´nski, M.: On Hausdorff dimension of invariant sets for expanding maps of a circle. Ergod. Th. & Dynam. Sys. 6, 295–309 (1986)
    • 20. Urba´nski, M.: Invariant subsets of expanding mappings of the circle. Ergod. Th. & Dynam. Sys. 7, 627–645 (1987)
    • 21. Palmer, M.: On the classification of measure preserving transformations of Lebesgue spaces PhD thesis, University of Warwick (1979)
    • 22. Parry, W.: The Lorenz attractor and a related population model. Phys. Lett. A. 261, 63–73 (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno