Ir al contenido

Documat


Prime submodules and maximal submodules in the idealization of a module

  • Alex Molina [1] ; Mario Santiago [1] ; Juan Villanueva [2]
    1. [1] Universidad Nacional Mayor de San Marcos

      Universidad Nacional Mayor de San Marcos

      Perú

    2. [2] Universidade Federal de Mato Grosso

      Universidade Federal de Mato Grosso

      Brasil

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 11, Nº. 1, 2024, págs. 30-41
  • Idioma: inglés
  • DOI: 10.17268/sel.mat.2024.01.03
  • Enlaces
  • Resumen
    • This paper describes certain types of prime submodules and maximal submodules that are found within the idealization of a module. As a consequence of this, it is concluded that every module over a commutative ring with identity element has an extension whose prime spectrum is nonempty.

  • Referencias bibliográficas
    • Dauns J. Prime modules. Journal für die reine und angewandte Mathematika. 1978;298:156-81.
    • Lu CP. Prime submodules of modules. Commentarii mathematici Universitatis Sancti Pauli. ;33(1):61-9.
    • Lu CP. Spectra of modules. Communications in Algebra. 1995;23(10):3741-52.
    • McCasland RL, Moore ME. Prime submodules. Communications in Algebra. 1992;20(6):1803-17.
    • Lu CP. The Zariski topology on the prime spectrum of a module. Houston Journal of Mathematics. 1999;25(3):417-32.
    • Duraivel T. Topology on spectrum of modules. Journal of the Ramanujan Mathematical Society. 1994;9(1):25-34.
    • Nagata M. Local rings. New York: Robert E. Krieger Publishing Company; 1975.
    • Anderson DD, Winders M. Idealization of a module. Journal of Commutative Algebra. 2009;1(1):3-56.
    • Jenkins J, Smith PF. On the prime radical of a module over a commutative ring. Communications in Algebra. 1992;20(12):3593-602.
    • Molina A, Santiago M, Villanueva J. On the prime spectrum of Z-module ZxZ. Sometido para publicación. 2024:15 pp.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno