Ir al contenido

Documat


Surfaces with quadratic support function

  • Armando M. V. Corro [1] ; José Luis Teruel Carretero [2] ; Carlos Maber Carrion Riveros [2]
    1. [1] Universidade Federal de Goiás

      Universidade Federal de Goiás

      Brasil

    2. [2] Universidade de Brasília

      Universidade de Brasília

      Brasil

  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 11, Nº. 1, 2024, págs. 20-29
  • Idioma: inglés
  • DOI: 10.17268/sel.mat.2024.01.02
  • Enlaces
  • Resumen
    • In this paper, we study oriented surfaces S in R3, called surfaces with quadratic support function (in short QSF-surfaces). We obtain a Weierstrass type representation for the QSF-surfaces which depends on two holomorphic functions. Moreover, classify the QSF-surfaces of rotation. Also, we give some explicit examples of this class of surfaces.

  • Referencias bibliográficas
    • Appell P. Surfaces telles quel'origene se projette sur chaque normale au milieu des centres de curvature principaux. Amer. J. Math. 1988;...
    • Ferreira W, Roitman P. Area preserving transformations in two-dimensional space forms and classical differential geometry. Israel J. Math....
    • Tzitzeica G. Sur une nouvelle classe de surfaces. Rend. Circ. Mat. Palermo. 1908; 25:180–
    • Dias DG, Corro AV. Classes of Generalized Weingarten Surfaces in the Euclidean 3-Space. Adv. Geom. 2016; 16(1):45–55.
    • Riveros CMC, Corro AV, Dias DG. A class of generalized special Weingarten surfaces. Int. J. of Math. 2019; 30(14):1950075.
    • Martinez A, Roitman P. A class of surfaces related to a problem posed by Elie Cartan. Ann. di Mat. Pura ed Applicata. 2016; 4(195):513–527.
    • Corro AV, Fernandes KV, Riveros CMC. Generalized Weingarten Surfaces of harmonic type in hiperbolic 3-Space. Diff. Geom. and its Appl. 2018;...
    • Corro AV, Riveros CMC, Fernandes KV. Ribaucour surfaces of harmonic type. Int. J. of Math. 2022; 33(1):(2250006 (25 pages).
    • Corro AV, Mendez MJC. Ribaucour-type Surfaces, arXiv:2012.02132 [math.DG].

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno