Ir al contenido

Documat


The Graphical Representation of Inequality

  • ALBERTO ARCAGNI [1] ; FRANCESCO PORRO [1]
    1. [1] University of Milano-Bicocca

      University of Milano-Bicocca

      Milán, Italia

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 37, Nº. 2, 2014, págs. 419-437
  • Idioma: inglés
  • DOI: 10.15446/rce.v37n2spe.47947
  • Títulos paralelos:
    • La representación gráfica de la desigualdad
  • Enlaces
  • Resumen
    • español

      Desde el siglo pasado el análisis y representación gráfica de la desigualdad juega un papel importante en la economía. En la literatura varias curvas han sido propuestas y desarrolladas para simplificar la descripción de la desigualdad. El objetivo de este artículo es revisar y comparar las curvas de la desigualdad más conocidas evaluando sus características y enfocándose en su interpretación.

    • English

      As of the past century, the analysis and the graphical representation of inequality play a very important role in economics. In the literature, several curves have been proposed and developed to simplify the description of inequality. The aim of this paper is a review and a comparison of the most known inequality curves, evaluating the features of each, with a particular focus on interpretation.

  • Referencias bibliográficas
    • Arcagni, A.,Porro, F.. (2013). 'On the parameters of Zenga distribution'. Statistical Methods & Applications. 22. 285-303
    • Arcagni, A.,Zenga, M.. (2013). 'Application of Zenga's distribution to a panel survey on household incomes of European Member States'....
    • Bank of Italy. (2012). 'Indagine sui bilanci delle famiglie italiane'.
    • Bonferroni, C.E.. (1930). Elementi di Statistica Generale. Seeber.
    • Dagum, C.. (1977). A New Model of Personal Income Distribution : Specification and Estimation. University of Ottawa, Faculty of Social Sciences,...
    • De Vergottini, M.. (1940). 'Sul significato di alcuni indici di concentrazione'. Annali di Economia Nuova Serie. 2. 317-347
    • Gastwirth, J.. (1972). 'The estimation of the Lorenz curve and Gini index'. The Review of Economics and Statistics. 54. 306-316
    • Gini, C.. (1914). 'Sulla misura della concentrazione e della variabilità dei caratteri'. Atti del Reale Istituto Veneto di Scienze,...
    • Giorgi, G.,Crescenzi, M.. (2001). 'A look at Bonferroni inequality measure in a reliability framework'. Statistica. 41. 571-583
    • Greselin, F.,Pasquazzi, L.. (2009). 'Asymptotic confidence intervals for a new inequality measure'. Communications in Statistics-Simulation...
    • Greselin, F.,Pasquazzi, L.,Zitikis, Ri\vcardas. (2013). 'Contrasting the Gini and Zenga indices of economic inequality'. Journal of...
    • Langel, M.,Tillé, Y.. (2012). 'Inference by linearization for Zenga's new inequality index: A comparison with the Gini index'....
    • Lorenz, M.. (1905). 'Methods of measuring the concentration of wealth'. Publications of the American Statistical Association. 9. 209-219
    • Pietra, G.. (1915). 'Delle relazioni fra indici di variabilità note I e II'. Atti del Reale Istituto Veneto di Scienze, Lettere ed...
    • Polisicchio, M.. (2008). 'The continuous random variable with uniform point inequality measure I(p)'. Statistica & Applicazioni....
    • Polisicchio, M.,Porro, F.. (2011). 'A comparison between Lorenz L(p) curve and Zenga I(p) curve'. Statistica Applicata. 21. 289-301
    • Porro, F.. (2008). Equivalence between partial order based on curve L(p) and partial order based on curve I(p). 'Proceedings of SIS 2008'....
    • Pundir, S.,Arora, S.,Jain, K.. (2005). 'Bonferroni curve and the related statistical inference'. Statistics & Probability Letters....
    • (2013). R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.
    • Radaelli, P.. (2010). 'On the decomposition by subgroups of the Gini index and Zenga's uniformity and inequality indexes'. International...
    • Tarsitano, A.. (1990). 'Income and Wealth Distribution, Inequality and Poverty'. C. Dagum and M. Zenga.
    • Zenga, M.M.. (1984). 'Tendenza alla massima ed alla minima concentrazione per variabili casuali continue'. Statistica. 44. 619-640
    • Zenga, M.. (2007). 'Inequality curve and inequality index based on the ratios between lower and upper arithmetic means'. Statistica...
    • Zenga, M.. (2010). 'Mixture of Polisicchio's truncated Pareto distributions with beta weights'. Statistica & Applicazioni....
    • Zenga, M.. (2013). 'Decomposition by sources of the Gini, Bonferroni and Zenga inequality indexes'. Statistica & Applicazioni....
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno