Colombia
Recently there has been an increased interest in the analysis of different types of manifold-valued data, which include data from symmetric positive-definite matrices. In many studies of medical cerebral image analysis, a major concern is establishing the association among a set of covariates and the manifold-valued data, which are considered as responses for characterizing the shapes of certain subcortical structures and the differences between them. The manifold-valued data do not form a vector space, and thus, it is not adequate to apply classical statistical techniques directly, as certain operations on vector spaces are not defined in a general Riemannian manifold. In this article, an application of the partial least squares regression methodology is performed for a setting with a large number of covariates in a euclidean space and one or more responses in a curved manifold, called a Riemannian symmetric space. To apply such a technique, the Riemannian exponential map and the Riemannian logarithmic map are used on a set of symmetric positive-definite matrices, by which the data are transformed into a vector space, where classic statistical techniques can be applied. The methodology is evaluated using a set of simulated data, and the behavior of the technique is analyzed with respect to the principal component regression.
Recientemente ha habido un aumento en el interés de analizar diferentes tipos de datos variedad-valuados, dentro de los cuáles aparecen los datos de matrices simétricas definidas positivas. En muchos estudios de análisis de imágenes médicas cerebrales, es de interés principal establecer la asociación entre un conjunto de covariables y los datos variedad-valuados que son considerados como respuesta, con el fin de caracterizar las diferencias y formas en ciertas estructuras sub-corticales. Debido a que los datos variedad-valuados no forman un espacio vectorial, no es adecuado aplicar directamente las técnicas estadísticas clásicas, ya que ciertas operaciones sobre espacio vectoriales no están definidas en una variedad riemanniana general. En este artículo se realiza una aplicación de la metodología de regresión de mínimos cuadrados parciales, para el entorno de un número grande de covariables en un espacio euclídeo y una o varias respuestas que viven una variedad curvada llamada espacio simétrico Riemanniano. Para poder llevar a cabo la aplicación de dicha técnica se utilizan el mapa exponencial Riemanniano y el mapa log Riemanniano sobre el conjunto de matrices simétricas positivas definida, mediante los cuales se transforman los datos a un espacio vectorial en donde se pueden aplicar técnicas estadísticas clásicas. La metodología es evaluada por medio de un conjunto de datos simulados en donde se analiza el comportamiento de la técnica con respecto a la regresión por componentes principales.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados