Ir al contenido

Documat


Bi-Lipschitz arcs in metric spaces with controlled geometry

  • Jacob Honeycutt [2] ; Vyron Vellis [2] ; Scott Zimmerman [1]
    1. [1] Ohio State University

      Ohio State University

      City of Columbus, Estados Unidos

    2. [2] The University of Tennessee, Knoxville, USA
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 40, Nº 5, 2024, págs. 1887-1916
  • Idioma: inglés
  • DOI: 10.4171/RMI/1484
  • Enlaces
  • Resumen
    • In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno