Ir al contenido

Documat


Propagation Dynamics in a Reaction-Diffusion System on Zika Virus Transmission

  • Shuxia Pan [1] ; Chongyan Ma [1]
    1. [1] Lanzhou University of Technology

      Lanzhou University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This article studies the propagation dynamics in a reaction-diffusion system modeling the Zika virus transmission, during which the infected vectors and hosts are regarded as invaders in spatial domain R. The system does not satisfy the mixed quasimonotone condition. A constant threshold is defined by the corresponding eigenvalue problem at the disease free steady state. For the traveling wave solutions connecting the disease free steady state to the endemic steady state, the threshold is the minimal wave speed determining the existence or nonexistence of monotone traveling wave solutions in the sense of components. For the initial value problem with fast decaying initial condition, the threshold describes the spatial expansion ability of the infected vectors and hosts. It is also proved that for the wave speed larger than the threshold, the corresponding traveling wave solution is unique in the sense of phase shift and exponentially asymptotic stable in the proper weighted functional space. The stability also shows the spreading speed in the corresponding Cauchy problem with special decaying initial condition.

  • Referencias bibliográficas
    • 1. Aronson, D.G., Weinberger, H.F. (1975) Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in: J.A. Goldstein(Ed.),...
    • 2. Cai, Y., Wang, K., Wang, W.: Global transmission dynamics of a Zika virus model. Appl. Math. Lett. 92, 190–195 (2019)
    • 3. Chen, X., Guo, J.-S.: Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics. Math. Ann. 326, 123–146...
    • 4. Chen, X., Guo, J.-S.: Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations. J. Diff. Equ....
    • 5. Dang, J., Zhang, G.-B., Tian, G.: Wave propagation for a discrete diffusive mosquito-borne epidemic model. Qual. Theory Dyn. Syst. 233,...
    • 6. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Equ. 3, 58–73 (1979)
    • 7. Ducrot, A.: Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Diff. Equ. 260, 8316–8357...
    • 8. Fang, J., Lou, Y., Wu, J.: Can pathogen spread keep pace with its host invasion? SIAM J. Appl. Math. 76, 1633–1657 (2016)
    • 9. Fang, J., Zhao, X.-Q.: Monotone wavefronts for partially degenerate reaction-diffusion systems. J. Dynam. Diff. Equ. 21, 663–680 (2009)
    • 10. Fitzgibbon, W.E., Morgan, J.J., Webb, G.F.: An outbreak vector-host epidemic model with spatial structure: the 2015–2016 Zika outbreak...
    • 11. He, Y., Lin, G., Zhang, S.: Spreading speeds in an asymptotic autonomous system with application to an epidemic model. Math. Meth. Appl....
    • 12. Hsu, C.-H., Yang, T.-S., Yu, Z.: Existence and exponential stability of traveling waves for delayed reaction-diffusion systems. Nonlinearity...
    • 13. Huang, M., Wu, S.-L., Zhao, X.-Q.: Propagation dynamics for time-periodic and partially degenerate reaction-diffusion systems. SIAM J....
    • 14. Lewis, M.A., Renclawowicza, J., van den Driessche, P.: Traveling waves and spread rates for a West Nile virus model. Bull. Math. Biol....
    • 15. Li, F., Zhao, X.-Q.: Global dynamics of a reaction-diffusion model of Zika virus transmission with seasonality. Bull. Math. Biol. 83,...
    • 16. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math....
    • 17. Lin, G., Wang, X., Zhao, X.-Q.: Propagation phenomena of a vector-host disease model. J. Diff. Equ 378, 757–791 (2024)
    • 18. Ma, S., Zou, X.: Existence, uniqueness and stability of traveling waves in a discrete reaction-diffusion equation with delay. J. Diff....
    • 19. Magal, P., Webb, G., Wu, Y.: On a vector-host epidemic model with spatial structure. Nonlinearity 31, 5589–5614 (2018)
    • 20. Magal, P., Webb, G., Wu, Y.: On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 79, 284–304 (2019)
    • 21. Martin, R.H., Smith, H.L.: Abstract functional-differential equations and reaction-diffusion systems. Trans. Amer. Math. Soc. 321, 1–44...
    • 22. Murray, J.D.: Mathemat. Biol. II. Spatial models and biomedical applications. Third edition. SpringerVerlag, New York (2003)
    • 23. San, X.-F., Wang, Z.-C., Feng, Z.: Traveling waves for an epidemic system with bilinear incidence in a periodic patchy environment. J....
    • 24. Thieme, H.R.: Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol. 8,...
    • 25. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling wave solutions of parabolic systems, translations of mathematical monographs 140,...
    • 26. Wang, J., Wu, W., Li, C.: Dynamical analysis of a reaction-diffusion mosquito-borne model in a spatially heterogeneous environment. Adv....
    • 27. Wang, J.-B., Qiao, S.X., Wu, C.F.: Wave phenomena in a compartmental epidemic model with nonlocal dispersal and relapse. Discrete Contin....
    • 28. Wang, K., Zhao, H., Wang, H., Zhang, R.: Traveling wave of a reaction-diffusion vector-borne disease model with nonlocal effects and distributed...
    • 29. Wang, X., Lin, G., Ruan, S.: Spreading speeds and traveling wave solutions of diffusive vector-borne disease models without monotonicity....
    • 30. Wang, Z.-C., Li, W.T., Ruan, S.: Traveling wave fronts of reaction-diffusion systems with spatiotemporal delays. J. Diff Equ. 222, 185–232...
    • 31. Wang, Z.-C., Li,W.T., Ruan, S.: Traveling fronts in monostable equations with nonlocal delayed effects. J. Dynam. Diff. Equ. 20, 573–607...
    • 32. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)
    • 33. Wu, J., Zou, X.: Traveling wave fronts of reaction-diffusion systems with delay. J. Dynam. Diff. Equ. 13, 651–687 (2001)
    • 34. Wu, S.-L., Zhao, H., Zhang, X., Hsu, C.-H.: Spatial dynamics for a time-periodic epidemic model in discrete media. J. Diff. Equ. 374,...
    • 35. Wu, W., Hu, Z., Zhang, L., Teng, Z.: Traveling waves for a diffusive virus infection model with humoral immunity, cell-to-cell transmission,...
    • 37. Ye, Q., Wang, M.: Travelling wave front solutions of Noyes-Field system for Belousov-Zhabotinski reaction. Nonlinear Anal. 11, 1289–1302...
    • 38. Yuan, X., Lou, Y., He, D., Wang, J., Gao, D.: A Zika endemic model for the contribution of multiple transmission routes. Bull. Math. Biol...
    • 39. Zhang, L.: Spatial propagation phenomena for a diffusive epidemic model with vaccination. Z. Angew. Math. Phys 74, 205–25 (2023)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno