Ir al contenido

Documat


The Concentration of Multiplicity Solutions for a Class Hamiltonian Elliptic Systems

  • Yuanyang Yu [1]
    1. [1] Yunnan University

      Yunnan University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we are concerned with the concentration of multiplicity solutions for the following Hamiltonian elliptic systems −ε2u + u = K(x) f (v), x ∈ RN , −ε2v + v = K(x)g(u), x ∈ RN , where N ≥ 3, ε > 0 is a small parameter, K : RN → R is bounded positive continuous function, f and g are continuous but are not necessarily of class C1. By establishing a strongly indefinite variational setting, we prove the number of solutions is at least the number of global maximum points of K, and the maximum points of K is the concentration position of these solutions as ε → 0.

  • Referencias bibliográficas
    • 1. Abdellaoui, B., Felli, V., Peral, I.: Some remarks on systems of elliptic equations doubly critical in the whole RN . Calc. Var. Part....
    • 2. Ackermann, N.: A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations. J. Funct. Anal. 234(2), 277–320...
    • 3. Alves, C., Soares, S.: Existence and concentration of positive solutions for a class of gradient systems. NoDEA Nonlinear Differ. Equ....
    • 4. Alves, C.O., Carri ao, P.C., Miyagaki, 0.H.: On the existence of positive solutions of a perturbed Hamiltonian system in RN . J. Math....
    • 5. Alves, C.O., de Lima, R.N., Nóbrega, A.B.: Existence and multiplicity of solutions for a class of Dirac equations. J. Differ. Equ. 370,...
    • 6. Alves, C.O., Soares, S.: Singularly perturbed elliptic systems. Nonlinear Anal. 64(1), 109–129 (2006)
    • 7. Alves, C.O., Soares, S., Yang, J.: On existence and concentration of solutions for a class of Hamiltonian systems in RN . Adv. Nonlinear...
    • 8. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc.(2) 75(1), 67–82 (2007)
    • 9. Carri ao, P., Lisboa, N., Miyagaki, O.: Positive solutions for a class of elliptic systems with singular potentials. Z. Angew. Math. Phys....
    • 10. Ávila, A.I., Yang, J.: On the existence and shape of least energy solutions for some elliptic systems. J. Differ. Equ. 191(2), 348–376...
    • 11. Ávila, A.I., Yang, J.: Multiple solutions of nonlinear elliptic systems. NoDEA Nonlinear Differ. Equ. Appl. 12(4), 459–479 (2005)
    • 12. Bartsch, T., de Figueiredo, D.G.: Infinitely many solutions of nonlinear elliptic systems. In Topics in nonlinear analysis, volume 35...
    • 13. Bartsch, T., Ding, Y.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279(12),...
    • 14. Bartsch, T., Li, H., Zou, W.: Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrödinger systems....
    • 15. Bartsch, T., Soave, N.: A natural constraint approach to normalized solutions of nonlinear Schrödinger equations and systems. J. Funct....
    • 16. Bartsch, T., Wang, Z., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2(2), 353–367 (2007)
    • 17. Benci, V., Rabinowitz, Paul H. P.H.: Critical point theorems for indefinite functionals. Invent. Math. 52(3), 241–273 (1979)
    • 18. Cao, D., Noussair, E.S.: Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN . Ann. Inst. H. Poincaré C...
    • 19. Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann....
    • 20. Ding, Y.: Variational methods for strongly indefinite problems, volume 7 of Interdisciplinary Mathematical Sciences. World Scientific...
    • 21. Ding, Y., Lee, C., Zhao, F.: Semiclassical limits of ground state solutions to Schrödinger systems. Calc. Var. Part. Differ. Equ. 51(3–4),...
    • 22. Ding, Y., Wang, H.: Existence and multiplicity of solutions for a class of Helmholtz systems. J. Differ. Equ. 365, 636–666 (2023)
    • 23. Ding, Y., Yu, Y.: The concentration behavior of ground state solutions for nonlinear Dirac equation. Nonlinear Anal. 195(24), 111738 (2020)
    • 24. De Figueiredo, D.G., Ding, Y.: Strongly indefinite functionals and multiple solutions of elliptic systems. Trans. Amer. Math. Soc. 355(7),...
    • 25. De Figueiredo, D.G., Marcos do Ó, J., Ruf, B.: An Orlicz-space approach to superlinear elliptic systems. J. Funct. Anal. 224(2), 471–496...
    • 26. De Figueiredo, D.G., Felmer, P.: On superquadratic elliptic systems. Trans. Amer. Math. Soc. 343(1), 99–116 (1994)
    • 27. De Figueiredo, D.G., Yang, J.: Decay, symmetry and existence of solutions of semilinear elliptic systems. Nonlinear Anal. 33(3), 211–234...
    • 28. Figueiredo, G.M., Pimenta, M.T.: Existence of ground state solutions to Dirac equations with vanishing potentials at infinity. J. Differ....
    • 29. Hulshof, J., Van der Vorst, R.: Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114(1), 32–58 (1993)
    • 30. Kryszewski, W., Szulkin, A.: An infinite-dimensional Morse theory with applications. Trans. Amer. Math. Soc. 349(8), 3181–3234 (1997)
    • 31. Kryszewski, W., Szulkin, A.: Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differ. Equ. 3(3),...
    • 32. Li, G., Wang, C.: The existence of nontrivial solutions to a semilinear elliptic system on RN without the Ambrosetti-Rabinowitz condition....
    • 33. Li, G., Yang, J.: Asymptotically linear elliptic systems. Comm. Part. Differ. Equ. 29(5–6), 925–954 (2004)
    • 34. Lin, T., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229(2),...
    • 35. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré...
    • 36. Lions, P.L.: On positive solutions of semilinear elliptic equations in unbounded domains. In Nonlinear diffusion equations and their equilibrium...
    • 37. Pankov, A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)
    • 38. Pistoia, A., Ramos, M.: Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions. J. Differ....
    • 39. Shen, Z., Yang, M., Zhao, S.: Existence of solutions for a weakly coupled Schrödinger system with critical growth. Math. Methods Appl....
    • 40. Sirakov, B.: On the existence of solutions of Hamiltonian elliptic systems in RN . Adv. Differ. Equ. 5(10–12), 1445–1464 (2000)
    • 41. Sirakov, B., Soares, S.: Soliton solutions to systems of coupled Schrödinger equations of Hamiltonian type. Trans. Amer. Math. Soc. 362(11),...
    • 42. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)
    • 43. Szulkin, A., Weth, T.: The method of Nehari manifold. In Handbook of nonconvex analysis and applications, pages 597–632. Int. Press, Somerville,...
    • 44. Triebel, H.: Interpolation theory, function spaces, differential operators. Heidelberg, second edition, Johann Ambrosius Barth (1995)
    • 45. Yang, J.: Multiple solutions of semilinear elliptic systems. Comment. Math. Univ. Carolin. 39(2), 257–268 (1998)
    • 46. Yang, Z., Yu, Y.: Geometrically distinct solutions of nonlinear elliptic systems with periodic potentials. Arch. Math. (Basel) 115(6),...
    • 47. Coti Zelati, V., Rabinowitz, P.: Homoclinic type solutions for a semilinear elliptic PDE on Rn. Comm. Pure Appl. Math. 45(10), 1217–1269...
    • 48. Zhao, F., Zhao, L., Ding, Y.: Multiple solutions for asymptotically linear elliptic systems. NoDEA Nonlinear Differ. Equ. Appl. 15(6),...
    • 49. Zhao, F., Zhao, L., Ding, Y.: A note on superlinear Hamiltonian elliptic systems. J. Math. Phys., 50(11):112702, 7, (2009)
    • 50. Zhao, F., Zhao, L., Ding, Y.: Multiple solutions for a superlinear and periodic elliptic system on RN . Z. Angew. Math. Phys. 62(3), 495–511...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno