Ir al contenido

Documat


Reducibility of 2-Dimensional Ultra-Differentiable Quasi-Periodic Systems with Small Parameters Under Brjuno-Rüssmann Condition

  • Shoujun Xu [1] ; Hao Wu [2] ; Junxiang Xu [2]
    1. [1] Hefei University

      Hefei University

      China

    2. [2] Southeast University

      Southeast University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this article, we delve into whether a two-dimensional ultra-differentiable quasiperiodic system can be reduced. This system is characterized by a coefficient matrix that varies smoothly with a small parameter. We establish, under the adapted BrjunoRüssmann non-resonance condition concerning the basic frequencies and without imposing any non-degeneracy assumptions related to the small parameter, that the system can indeed be reduced through an ultra-differentiable quasi-periodic linear transformation for a substantial set of parameters, as perceived in the Lebesgue measure sense.

  • Referencias bibliográficas
    • 1. Avila, A., Fayad, B., Krikorian, R.: KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)
    • 2. Bounemoura, A., Chavaudret, C., Liang, S.: Reducibility of ultra-differentiable quasiperiodic cocycles under an adapted arthmetic condition....
    • 3. Bounemoura, A., Féjoz, J.: KAM, α-Gevrey regularity and the α-Bruno-Rüssmann condition. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19, 1225–1279...
    • 4. Chavaudret, C.: Strong almost reducibility for analytic and Gevrey quasi-periodic cocycles. Bull. Soc. Math. France 141, 47–106 (2013)
    • 5. Chavaudre, C., Marmi, S.: Reducibility of quasiperiodic cocycles under a Brjuno-Rüssmann arithmetical condition. J. Mod. Dyn. 6, 59–78...
    • 6. Dingaburg, E., Sinai, Y.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Functional. Anal. i Priložen 9, 8–21...
    • 7. Fayad, B., Krikorian, R.: Herman’s last geometric theorem. Ann. Sci. Éc. Norm. Supér. 42, 193–219 (2009)
    • 8. Johnson, R., Sell, G.: Smoothness of spectral subbundles and reducibility of quasiperiodic linear differential systems. J. Differ. Equ....
    • 9. Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Comm. Math. Phys. 84, 403–438 (1982)
    • 10. Jorba, À., Simó, C.: On the reducibility of linear differential equations with quasiperiodic coefficients. J. Differ. Equ. 98, 111–124...
    • 11. Jorba, À., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27, 1704–1737 (1996)
    • 12. Pöschel, J.: KAM á la R. Regul. Chaotic. Dyn. 16, 1–2 (2011)
    • 13. Pöschel, J.: On the Siegel-Sternberg linearization theorem. J. Dynam. Differ. Equ. 33, 1399–1425 (2021)
    • 14. Rudin, W.: Division algebras of infinitely differentiable functions. J. Math. Mech. 11, 797–809 (1962)
    • 15. Rüssmann, H.: KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete Contin. Dyn. Syst....
    • 16. Stolovitch, L.: Smooth Gevrey normal forms of vector fields near a fixed point. Ann. Inst. Fourier. 63, 241–267 (2013)
    • 17. Xu, J., Wang, K., Zhu, M.: On the reducibility of 2-dimensional linear quasi-periodic systems with small parameters. Proc. Amer. Math....
    • 18. Wu, H., Xu, X., Zhang, D.: On the ultradifferentiable normalization. Math. Z. 299, 751–779 (2021)
    • 19. Zhang, D., Wu, H.: On the reducibility of two-dimensional quasi-periodic systems with Liouvillean basic frequencies and without non-degeneracy...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno