Ir al contenido

Documat


Singular Yamabe-type problems with an asymptotically flat metric

  • Jiguang Bao [1] ; Yimei Li [2] ; Kun Wang [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

    2. [2] Beijing Jiaotong University

      Beijing Jiaotong University

      China

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 40, Nº 4, 2024, págs. 1351-1386
  • Idioma: inglés
  • DOI: 10.4171/RMI/1458
  • Enlaces
  • Resumen
    • In this paper, we study the asymptotic symmetry and local behavior of positive solutions at infinity to the equation −L g u=∣x∣ τ u n−2n+2+2τ outside a bounded set in Rn , where n≥3, −2<τ<0, and Lg is the conformal Laplacian with asymptotically flat Riemannian metric g. We prove that the solution, at ∞, either converges to a fundamental solution of the Laplace operator on the Euclidean space, or is asymptotically close to a Fowler-type solution defined on Rn ∖{0}.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno