Ir al contenido

Documat


Every noncompact surface is a leaf of a minimal foliation

  • Paulo Gusmão [1] ; Carlos Meniño Cotón [2]
    1. [1] Universidade Federal Fluminense

      Universidade Federal Fluminense

      Brasil

    2. [2] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 40, Nº 4, 2024, págs. 1207-1248
  • Idioma: inglés
  • DOI: 10.4171/RMI/1486
  • Enlaces
  • Resumen
    • We show that any noncompact oriented surface is homeomorphic to the leaf of a minimal foliation of a closed 3-manifold. These foliations are (or are covered by) suspensions of continuous minimal actions of surface groups on the circle. Moreover, the above result is also true for any prescription of a countable family of topologies of noncompact surfaces: they can coexist in the same minimal foliation. All the given examples are hyperbolic foliations, meaning that they admit a leafwise Riemannian metric of constant negative curvature. Many oriented Seifert manifolds with a fibered incompressible torus and whose associated orbifold is hyperbolic admit minimal foliations as above. The given examples are not transversely C2 -smoothable.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno