Ir al contenido

Documat


Uso de Minimización Irrestricta de una Función Espectral para Estimar la Zona Visible en Matlab 19.0

  • Quispe , Reynaldo [1] ; Juli, Verónica [2]
    1. [1] Universidad Nacional José María Arguedas

      Universidad Nacional José María Arguedas

      Andahuaylas, Perú

    2. [2] Universidad Nacional de San Agustín de Arequipa, Departamento Académico de Física, Arequipa, Perú
  • Localización: Revista Politécnica, ISSN-e 2477-8990, Vol. 54, Nº. 1, 2024 (Ejemplar dedicado a: Revista Politécnica), págs. 87-96
  • Idioma: español
  • DOI: 10.33333/rp.vol54n1.09
  • Títulos paralelos:
    • Use of Unrestricted Minimization of a Spectral Function to Estimate the Visible Zone in Matlab 19.0
  • Enlaces
  • Resumen
    • español

      Debido a la simplicidad y amplia aplicabilidad, la minimización irrestricta en la zona visible (Vis) es una herramienta importante para resolver muchos problemas de optimización de parámetros y condiciones operativas de sistemas fotovoltaicos. El propósito de este trabajo es usar la minimización irrestricta de una función objetivo simplificada E para estimar la zona Vis. Utilizamos el método cuantitativo y técnica documental, con una muestra de 34 datos experimentales Vis de la estación de la Universidad Heredia. Se utilizó el Software Matlab 19.0 y se aplicó el método paramétrico: minimización de un modelo matemático mediante el algoritmo básico con corrección de Armijo mediante el backtracking. El resultado obtenido es un optimizador factible de E en 33 iteraciones, la cual determinó un modelo de transferencia de la zona Vis de turbidez por aerosoles  3,69x10-2 y capa de ozono (l) 57,40x10-2 cm con parámetros estadísticos de incertidumbre 0,132%, 2,066% para el error de sesgo medio relativo (rMBE) y error cuadrático medio relativo (rRMSE) respectivamente. Se concluyó que la atmósfera de la Universidad Heredia presenta un cielo blanco alternado turbio sin agujero de ozono.

    • English

      Due to the simplicity and wide applicability, unrestricted minimization in the visible zone (Vis) is an important tool to solve many optimization problems of parameters and operating conditions of photovoltaic systems. The purpose of this work is to use unrestricted minimization of a simplified objective function E to estimate the Vis zone. We used a quantitative method and a documentary technique, analyzing a sample of 34 Vis experimental data from the Heredia University station. The parametric method was applied by means of the Matlab 19.0 Software, specifically through the minimization of a mathematical model employing the basic algorithm with Armijo correction using backtracking. The result obtained is a feasible optimizer of E in 33 iterations, which determined a transfer model of the Vis zone of aerosol turbidity 3.69x10-2 and ozone layer (l) 57.40x10-2 cm with statistical parameters of uncertainty 0.132%, 2.066% for the relative mean bias error (rMBE) and relative root mean square error (rRMSE) respectively. It is concluded that the atmosphere of the Heredia University presents a cloudy alternating white sky without an ozone hole.

       

  • Referencias bibliográficas
    • Abunima, H., Teh, J., & Jabir, H. J. (2019). A new solar radiation model for a power system reliability study. IEEE Access, 7, 64758–64766....
    • Alamatsaz, K., Fatemi Ghomi, S. M. T., & Iranpoor, M. (2021). Minimal covering unrestricted location of obnoxious facilities: bi-objective...
    • Alghamdi, A. S. (2023). Optimal Power Flow of Hybrid Wind/Solar/Thermal Energy Integrated Power Systems Considering Costs and Emissions via...
    • Aliyeva, Y. N., Mammadova, K. A., & Huseynova, A. N. (2022). A Theoretical Model of RGB Attenuation of Solar Radiation Components Under...
    • Bai, J., & Zong, X. (2021). Global solar radiation transfer and its loss in the atmosphere. Applied Sciences (Switzerland), 11(6). https://doi.org/10.3390/app11062651
    • Basith, A., Ulin Nuha, M., Prastyani, R., & Winarso, G. (2019). COMMUNICATIONS IN SCIENCE AND TECHNOLOGY Aerosol optical depth (AOD) retrieval...
    • Bosca Berga, J. V. (1995). Contribucion al estudio de la radiacion solar y de la determinacion de la turbiedad atmosferica. Aplicacion a Valencia...
    • Borah, P., & Gupta, D. (2020). Unconstrained convex minimization based implicit Lagrangian twin extreme learning machine for classification...
    • Costa, R. S., Martins, F. R., & Pereira, E. B. (2012). Aerossóis atmosféricos e a quantificação do recurso energético solar: experimentos...
    • Cox, J. L., Hamilton, W. T., Newman, A. M., Wagner, M. J., & Zolan, A. J. (2023). Real-time dispatch optimization for concentrating solar...
    • de Wijn, A. G., Casini, R., Carlile, A., Lecinski, A. R., Sewell, S., Zmarzly, P., Eigenbrot, A. D., Beck, C., Wöger, F., & Knölker, M....
    • Di Pietro, S. (2022). Processes of urban transition to autonomous decentralized systems of renewable energy. Estudios Demograficos y Urbanos,...
    • Drozdowski, M., & Shakhlevich, N. V. (2021). Scheduling divisible loads with time and cost constraints. Journal of Scheduling, 24(5),...
    • Duan, Z., Yu, H., Zhang, Q., & Tian, L. (2023). Parameter Extraction of Solar Photovoltaic Model Based on Nutcracker Optimization Algorithm....
    • Dwail, H. H., & Shiker, M. A. K. (2020). Using a trust region method with nonmonotone technique to solve unrestricted optimization problem....
    • Emiola, I., Adem, R. (Junio, 2021). Comparison of Minimization Methods for Rosenbrock Functions. Work presented at 2021 29th Mediterranean...
    • Eslami, M., Akbari, E., Seyed Sadr, S. T., & Ibrahim, B. F. (2022). A novel hybrid algorithm based on rat swarm optimization and pattern...
    • Farag, M. M., Patel, N., Hamid, A. K., Adam, A. A., Bansal, R. C., Bettayeb, M., & Mehiri, A. (2023). An Optimized Fractional Nonlinear...
    • Fei, L., Yin, Y., Yang, M., Zhang, S., & Wang, C. (2021). Wearable solar energy management based on visible solar thermal energy storage...
    • Ferry, M. W., Gill, P. E., Wong, E., & Zhang, M. (2021). Projected-Search Methods for Bound-Constrained Optimization. http://arxiv.org/abs/2110.08359
    • Filos-Ratsikas, A., Kanellopoulos, P., Voudouris, A. A., & Zhang, R. (2023). Settling the Distortion of Distributed Facility Location....
    • Franc, V., Yermakov, A., Balasubramanian, V. N., & Tsang, I. (2021). Learning Maximum Margin Markov Networks from examples with missing...
    • Ghosh, S., Acharya, T., & Maity, S. P. (2019). On outage minimization in RF energy harvesting relay assisted bidirectional communication....
    • Gueymard, C. A., & Kambezidis, H. D. (2004). SOLAR RADIATION AND DAYLIGHT MODELS. In Solar Spectral Radiation (pp. 221-301). Elsevier....
    • Hamilton, W. T., Husted, M. A., Newman, A. M., Braun, R. J., & Wagner, M. J. (2020). Dispatch optimization of concentrating solar power...
    • Hoque, A., & Islam, M. T. (2020). Numerical Analysis of Single Negative Broadband Metamaterial Absorber Based on Tri Thin Layer Material...
    • Ilango, R., Loff, B., & Oliveira, I. C. (2020). NP-Hardness of circuit minimization for multi-output functions. Leibniz International...
    • Iqbal, M. (1983). A CLOUDLESS-SKY ATMOSPHERE AND ITS OPTICS. In An Introduction to Solar Radiation (pp. 85–105). Elsevier. https://doi.org/10.1016/b978-0-12-373750-2.50010-0
    • Jiang, H., & Dong, Y. (2016). A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization...
    • Kairouz, P., Ribero, M., Rush, K., & Thakurta, A. (2020). Fast dimension independent private adagrad on publicly estimated subspaces....
    • Lefèvre, M., Oumbe, A., Blanc, P., Espinar, B., Gschwind, B., Qu, Z., Wald, L., Schroedter-Homscheidt, M., Hoyer-Klick, C., Arola, A., Benedetti,...
    • Li, J., Qin, C., Yang, C., Ai, B., & Zhou, Y. (2023). Extraction of Single Diode Model Parameters of Solar Cells and PV Modules by Combining...
    • Li, Y., Liu, Z., & Liu, H. (2019). A subspace minimization conjugate gradient method based on conic model for unconstrained optimization....
    • Lisenko, S. A. (2018). Atmospheric correction of multispectral satellite images based on the solar radiation transfer approximation model....
    • Manoharan, H., Teekaraman, Y., Kuppusamy, R., & Radhakrishnan, A. (2021). A Novel Optimal Robotized Parking System Using Advanced Wireless...
    • Masoom, A., Kosmopoulos, P., Bansal, A., & Kazadzis, S. (2020). Solar energy estimations in india using remote sensing technologies and...
    • Mims, F. M. (2022). A 30-Year Climatology (1990-2020) of Aerosol Optical Depth and Total Column Water Vapor and Ozone over Texas. Bulletin...
    • Paixão, D. F. S., Quirino, P. P. S., Fialho, R. L., Americano Da Costa, M. V., & Pontes, K. V. (2023). A dynamic optimization approach...
    • Premkumar, M., Shankar, N., Sowmya, R., Jangir, P., Kumar, C., Abualigah, L., & Derebew, B. (2023). A reliable optimization framework...
    • Stefanov, S. M. (2021). Numerical solution of some systems of nonlinear algebraic equations. Journal of Interdisciplinary Mathematics, 24(6),...
    • Stutzmann, M., & Csoklich, C. (2022). The Physics of Renewable Energy Graduate Texts in Physics. https://doi.org/10.1007/978-3-031-17724-8
    • Upadhyay, V. A., Geisler, B. P., Sun, L., Uhl, L., Kaufman, R. M., Stowell, C., Makar, R. S., & Bendapudi, P. K. (2019). Utilizing a PLASMIC...
    • Wen, T. H., Chuang, T. W., & Tipayamongkholgul, M. (Eds.). (2023). Earth Data Analytics for Planetary Health. Springer Nature
    • Wright, J. (2003). Validación experimental de un modelo espectral para la radiación solar directa en condiciones de cielos claros. Top. Meteoro....
    • Wu, H., & Dumitrescu, S. (2020). Design of General Entropy-Constrained Successively Refinable Unrestricted Polar Quantizer. IEEE Transactions...
    • Zakinyan, R., & Zakinyan, A. (Eds.). (2023). Physics of the Atmosphere, Climatology and Environmental Monitoring. Springer International...
    • Zo, I. S., Jee, J. B., & Lee, K. T. (2014). Development of GWNU (Gangneung-Wonju National University) one-layer transfer model for calculation...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno