Ir al contenido

Documat


Resumen de Semigroups of class Co on l2(Z)

Yolanda S. Santiago Ayala

  • In this work we begin by studying the generalized multiplication operator M on the l2(Z). We prove that this operator is not bounded, is densely defined and symmetric and therefore does not admit a symmetric linear extension to the entire space. We introduce a family of operators on the l2(Z) space with n even and demonstrate that it forms a contraction semigroup of class Co, having −M as its infinitesimal generator. We also prove that if we restrict the domains of that family of operators, they still remain a contraction semigroup. Finally, we give results of existence of solution of the associated abstract Cauchy problem and properties of continuous dependence of the solution in connection to other norms.


Fundación Dialnet

Mi Documat