Ir al contenido

Documat


A Comparative Study of Three Pre-trained Convolutional Neural Networks in the Detection of Violence Against Women

  • Autores: Ivan Gaytán Aguilar, Alejandro Aguilar, Roberto Alejo Eleuterio Árbol académico, Eréndira Rendón Lara, Grisel Miranda Piña, Everardo E. Granda Gutiérrez
  • Localización: CIENCIA ergo-sum, ISSN 1405-0269, Vol. 31, Nº. 1, 2024
  • Idioma: inglés
  • DOI: 10.30878/ces.v31n0a17
  • Títulos paralelos:
    • Estudio comparativo de tres redes neuronales convolucionales preentrenadas en la detección de violencia contra las mujeres
  • Enlaces
  • Resumen
    • español

      Se presenta una comparación de rendimiento entre tres modelos de redes CNN preentrenadas (VGG16, ResNet50 y MobileNet) en la detección en video de violencia física contra la mujer. Para llevar a cabo la clasificación de imágenes que incluyan violencia física contra la mujer y aquellas que no, se recolectaron 2 800 imágenes (1 400 violentas y 1 400 no violentas) de un Dataset público y posteriormente fueron divididas en entrenamiento (1 200 imágenes), validación (1 000 imágenes) y prueba (600 imágenes). Para evaluar su rendimiento, se tomaron en cuenta los valores de exactitud para cada modelo; al respecto, la red MobileNet se posiciona como el clasificador con mejor rendimiento para esta tarea de clasificación con 89% de exactitud.

    • English

      This paper presents a performance comparison between three models of pre-trained CNN networks (VGG16, ResNet50, and MobileNet) in detecting physical violence against women in video. To carry out the classification of images that include physical violence against women and those that do not, 2 800 images (1 400 violent and 1 400 non-violent) were collected from a public dataset and subsequently divided into training (1 200 images), validation (1 000 images) and test (600 images). To evaluate their performance, accuracy values for each model were considered, positioning the MobileNet network as the best-performing classifier for this classification task with 89% accuracy

  • Referencias bibliográficas
    • Abu, M., Amir, A., Lean, Y. H., Zahri, N. A. H., & Azemi, S. A. (2021). The performance analysis of transfer learning for steel defect...
    • Alexandrie, G. (2017). Surveillance cameras and crime: A review of randomized and natural experiments. Journal of Scandinavian Studies in...
    • Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan,...
    • Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in artificial intelligence research [research frontier]....
    • Beauxis-Aussalet, E., & Hardman, L. (2014). Visualization of Confusion Matrix for Non-Expert Users (Poster). Bianculli, M., Falcionelli,...
    • Bilbro, R., Ojeda, T., & Bengfort, B. (2019). Applied text analysis with Python. O’Reilly Media Inc.
    • Bisong, E. (2019). JupyterLab Notebooks. In Building Machine Learning and Deep Learning Models on Google Cloud Platform (pp. 49-57). Springer.
    • Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal of Software Tools, 25(11), 120-123.
    • Brown, J. B. (2018). Classifiers and their Metrics Quantified. Molecular informatics, 37(1-2). 1700127. https://doi.org/10.1002/minf.201700127
    • Canbek, G., Taskaya Temizel, T., & Sagiroglu, S. Bench (2021). BenchMetrics: a systematic benchmarking method for binary classification...
    • Castorena, C. M., Abundez, I. M., Alejo, R., Granda-Gutiérrez, E. E., Rendón, E., & Villegas, O. (2021). Deep neural network for gender-based...
    • Chen, H.-Y., & Su, C.-Y. (2018). An enhanced hybrid MobileNet. 2018 9th International Conference on Awareness Science and Technology (ICAST),...
    • Chicco, D. & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification...
    • Dandamudi, A. G. B., Vasumithra, G., Praveen, G., & Giriraja, C. V. (2020). CNN Based Aerial Image processing model for Women Security...
    • Deng, L., & Yu, D. (2014). Deep learning: Methods and applications. Foundations and Trends.
    • Ferrari, G., Torres-Rueda, S., Chirwa, E., Gibbs, A., Orangi, S., Barasa, E., Tawiah, T., Dwommoh Prah, R. K., Hitimana, R., Daviaud, E.,...
    • Fried, T. S. (2003). Violence against Women, Health and Human Rights Violence, Health, and Human Rights.
    • Gayathri, R. G., Sajjanhar, A., & Xiang, Y. (2020). Image-based feature representation for insider threat classification. Applied Sciences,...
    • Gujjar, J. P., Kumar, H. R. P., & Chiplunkar, N. N. (2021). Image classification and prediction using transfer learning in Colab notebook....
    • Hanson, A., PNVR, K., Krishnagopal, S., & Davis, L. (2019). Bidirectional Convolutional LSTM for the Detection of Violence in Videos....
    • Lea, R. A. (1993). World development report 1993. Investing in Health. World Development Indicators. New York: Oxford University Press.
    • Luque, A., Carrasco, A., Martín, A., & De Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based...
    • McQuigg, R. J. A. (2018). Is it time for a UN treaty on violence against women? The International Journal of Human Rights, 22(3), 305-324.
    • Naranjo-Torres, J., Mora, M., Hernández-García, R., Barrientos, R. J., Fredes, C., & Valenzuela, A. (2020). A review of convolutional...
    • Patel, M. (2021). Real-Time Violence Detection Using CNN-LSTM. ArXiv Preprint ArXiv:2107.07578.
    • Peixoto, B. M., Avila, S., Dias, Z., & Rocha, A. (2018). Breaking down violence: A deep-learning strategy to model and classify violence...
    • Qureshi, S. (2020). The recognition of violence against women as a violation of human rights in the United Nations system. South Asian Studies,...
    • Roa, J., Jacob, G., Gallino, L., & Hung, P. C. K. (2018). Towards smart citizen security based on speech recognition. 2018 Congreso Argentino...
    • Sandhiya, R., Gokul Prassad, A. R., Gokul Krishnan, D., & PrajethBalan, S. (2020). Women Abuse Detection in Video Surveillance using Deep...
    • Schwartz, M. D. (2000). Methodological issues in the use of survey data for measuring and characterizing violence against women. Violence...
    • Soffer, S., Klang, E., Shimon, O., Barash, Y., Cahan, N., Greenspana, H., & Konen, E. (2021). Deep learning for pulmonary embolism detection...
    • Stančin, I., & Jović, A. (2019). An overview and comparison of free Python libraries for data mining and big data analysis. 2019 42nd...
    • Tangirala, S. (2020). Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm....
    • Theckedath, D., & Sedamkar, R. R. (2020). Detecting affect states using VGG16, ResNet50, and SE-ResNet50 networks. SN Computer Science,...
    • Vijeikis, R., Raudonis, V., & Dervinis, G. (2022). Efficient violence detection in surveillance. Sensors, 22 (6), 2216.
    • Vosta, S., & Yow, K.-C. (2022). A CNN-RNN combined structure for real-world violence detection in surveillance cameras. Applied Sciences,...
    • WHO (World Health Organization). (1997). Violence against women: Definition and scope of the problem. Geneva: The World Health Organization.
    • Ye, L., Yan, S., Zhen, J., Han, T., Ferdinando, H., Seppänen, T., & Alasaarela, E. (2022). Physical violence detection based on distributed...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno