Ir al contenido

Documat


Infinitesimal Prolongation for Fractional Derivative 9-Caputo Variable Order and Applications

  • C. A. Soares Jr [1] ; F. S. Costa [2] ; J. Vanterler C. Sousa [2]
    1. [1] Mato Grosso State University
    2. [2] DEMATI-UEMA
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this work, we are concerned with the well-known Lie group theory to find symmetries of differential equations with fractional derivative Ψ-Caputo variable order.

      In this sense, we discuss the Leibniz-type rule and also the chain-type rule for the fractional derivative of this operator. In the end, we apply the results obtained in the fractional Harry Dym-type equation to find its symmetries, and we present a solution for a fractional Harry Dym-type equation with constant order.

  • Referencias bibliográficas
    • 1. Afolabi Ibrahim, A., MBAYA, J.H., BIRNINTSABA, D.A.B., ALHASSAN, B.G.: Deterministic model and analysis of fuel subsidy in nigeria commodity...
    • 2. Agarwal, P., Jain, S., Mansour, T.: Further extended caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4),...
    • 3. Agarwal, P.: Fractional calculus operators and their image formulas. Journal of the Korean Mathematical Society (2016)
    • 4. Alhaj, Mohamed Salah:Mathematical Model for Dengue FeverwithVertical Transmission and Control Measures: Dengue Fever Model. J. Math. Anal....
    • 5. Bahaa, G., Abdeljawad, T., Jarad, F.: On mittag-leffler kernel-dependent fractional operators with variable order. In: Fractional Calculus...
    • 6. Bakkyaraj, T.: Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative....
    • 7. Belevtsov, N.S., Lukashchuk, S.Y.: Symmetry group classification and conservation laws of the nonlinear fractional diffusion equation with...
    • 8. Benia, K., Souid, M.S., Jarad, F.,Alqudah, M.A., Abdeljawad, T.: Boundary value problem of weighted fractional derivative of a function...
    • 9. Benia, K., Souid, M.S., Jarad, F.,Alqudah, M.A., Abdeljawad, T.: Boundary value problem of weighted fractional derivative of a function...
    • 10. Bluman, G.W.: Applications of symmetry methods to partial differential equations. Springer (2010)
    • 11. Brunelli, J.C., da Costa, G.A.T.F.: On the nonlocal equations and nonlocal charges associated with the Harry Dym hierarchy. J. Math. Phys....
    • 12. Bruno, F.F.: Sullo sviluppo delle funzioni. Annali Sci. Matematiche Fisiche 6(1), 479–480 (1855)
    • 13. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations....
    • 14. da Vanterler, C., Sousa, J., Capelas Oliveira, E.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91...
    • 15. da Vanterler, C., Sousa, J., Capelas Oliveira, E.: Leibniz type rule: ψ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul....
    • 16. da Vanterler, C., Sousa, J., Machado, J.A.T., Capelas Oliveira, E.: The ψ-Hilfer fractional calculus of variable order and its applications....
    • 17. Capelas Oliveira, E., Machado, J.A.T.: A review of definitions for fractional derivatives and integral. Math. Probl. Engine. 2014 (2014)
    • 18. Costa, F.S., Soares, J.C.A., Plata, A.R.G., de Capelas Oliveira, E.: On the fractional Harry Dym equation. Comput. Appl. Math. 37(3),...
    • 19. Costa, F.S., Soares, J.C.A., Frederico, G.S.F., Sousa, J.V.d.C., Jarosz, S.: Complete infinitesimal prolongation of the Riemann-Liouville...
    • 20. Di Bruno, F.F.: Note sur une nouvelle formule de calcul différentiel. Quarterly J. Pure Appl. Math 1(359–360), 12 (1857)
    • 21. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestnik Usatu...
    • 22. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Fractional differential equations: change of variables and nonlocal symmetries, ufa math....
    • 23. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetries, conservation laws and group invariant solutions of fractional PDEs. Fract....
    • 24. Gazizov, R., Kasatkin, A., Lukashchuk, S.Y.: Group-invariant solutions of fractional differential equations. Nonlinear Science and Complexity...
    • 25. Gilding, B.H., Kersner, R.: Travelling waves in nonlinear diffusion-convection reaction, vol. 60. Springer Science & Business Media...
    • 26. Huang, Q., Zhdanov, R.: Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative. Physica...
    • 27. Ishteva, M., Boyadjiev, L., Scherer, R.: On the Caputo operator of fractional calculus and C-Laguerre functions. Math. Sci. Res. J. 9(6),...
    • 28. Iskenderoglu, G., Kaya, D.: Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense....
    • 29. Jadhav, C.P., Dale, T., Chinchane, D.V.: On dirichlet problem of time-fractional advection-diffusion equation. J. Fract. Calc. Nonlinear...
    • 30. Jadhav, C.P., Dale, T., et al.: On dirichlet problem of time-fractional advection-diffusion equation. J. Fract. Calc. Nonlinear Syst....
    • 31. Johnson, W.P.: The curious history of faà di Bruno’s formula. The Amer. Math. Monthly 109(3), 217–234 (2002)
    • 32. Kruskal, M.:Nonlinearwave equations.Dynamical Systems, Theory andApplications: Battelle Seattle 1974 Rencontres pp. 310–354 (1974)
    • 33. Kumar, S., Tripathi, M.P., Singh, O.P.: A fractional model of Harry Dym equation and its approximate solution. Ain Shams Engine. J. 4(1),...
    • 34. Laxmi, P., Jain, S., Agarwal, P.: Extended caputo k-type fractional derivative operator and its properties. Partial Differ. Equ. Appl.Math....
    • 35. Leo, R.A., Sicuro, G., Tempesta, P.: A theorem on the existence of symmetries of fractional pdes. Comptes Rendus Math. 352(3), 219–222...
    • 36. Leo, R.A., Sicuro, G., Tempesta, P.: A foundational approach to the Lie theory for fractional order partial differential equations. Frac....
    • 37. Li, C., Li, Z.: The finite-time blow-up for semilinear fractional diffusion equations with time ψ-caputo derivative. J. Nonlinear Sci....
    • 38. Li, C., Li, Z.: Stability and ψ-algebraic decay of the solution to ψ-fractional differential system. Int. J. Nonlinear Sci. Numer. Simulation...
    • 39. Machado, J. Tenreiro., Kiryakova, Virginia, Mainardi, Francesco: Recent history of fractional calculus. Commun. Nonlinear Sci. Numerical...
    • 40. Momani, S., Chen, Y., Agarwal, P., Machado, J.A.T., Baleanu, D.: Fractional Calculus: ICFDA 2018, Amman, Jordan, July 16-18. Springer...
    • 41. Oliveri, F.: Lie symmetries of differential equations: classical results and recent contributions. Symmetry 2(2), 658–706 (2010)
    • 42. Olver, P.J.: Applications of Lie groups to differential equations, vol. 107. Springer Science & Business Media (1993)
    • 43. Olver, P.J., et al.: Introduction to partial differential equations, vol. 1. Springer (2014)
    • 44. Ovsiannikov, L.V.: Group analysis of differential equations. Academic press (2014)
    • 45. Kumbinarasaiah, S., Yeshwanth, R.: Haar wavelet approach to study the control of biological pest model in tea plants. J. Fract. Calc....
    • 46. Kumbinarasaiah, S., Yeshwanth, R.: Haar wavelet approach to study the control of biological pest model in tea plants. J. Fract. Calc....
    • 47. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Kortewegde Vries equations. J. Math. Anal....
    • 48. Saifullah, S., SHAHID, S., ZADA, A.: Existence theory and stability analysis to a coupled nonlinear fractional mixed boundary value problem....
    • 49. Salahshour, S., Ahmadian, A., Senu, N., Baleanu, D., Agarwal, P.: On analytical solutions of the fractional differential equation with...
    • 50. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Int. Trans. Spec. Funct. 1(4), 277–300 (1993)
    • 51. Samko, S.G., Kilbas, A., Marichev, O.: Fractional integrals and derivatives. Gordon and Breach (1993)
    • 52. Shah, K., Ali, G., Ansari, K.J., Abdeljawad, T.,Meganathan,M., Abdalla, B.:On qualitative analysis of boundary value problem of variable...
    • 53. Shams, M., Kausar, N., Samaniego, C., Agarwal, P., Ahmed, S.F., Momani, S.: On efficient fractional caputo-type simultaneous scheme for...
    • 54. Shoaib, M., Sarwar, M.: Multi-valued common n-tupled fixed point result and their applications to system of n-integral equations. J. Math....
    • 55. Soares, J.C., Costa, F.S., Sousa, J.V.C.: Lie symmetry analysis for fractional evolution equation with ζ -Riemann-Liouville derivative....
    • 56. Teodoro, G.S., Machado, J.A.T., Capelas Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput....
    • 57. Valério, D., Ortigueira, M.D., Lopes, A.M.: How many fractional derivatives are there? Math. 10(5), 737 (2022)
    • 58. Wang, L.Z., Wang, D.J., Shen, S.F., Huang, Q.: Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional...
    • 59. Zafar, Z.U.A., Shah, Z., Ali, N., Alzahrani, E.O., Shutaywi, M.: Mathematical and stability analysis of fractional order model for spread...
    • 60. Zhang, Z.Y., Liu, C.B.: Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework. Appl....
    • 61. Zhang, Z.Y., Zheng, J.: Symmetry structure of multi-dimensional time-fractional partial differential equations. Nonlinearity 34(8), 5186...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno