Ir al contenido

Documat


Dynamics of a Stochastic BrucellosisModel with Vaccination and Environmental Pollution Transmission

  • Xiaodong Wang [1] ; Kai Wang [1] ; Lei Wang [1] ; Zhidong Teng [1]
    1. [1] Xinjiang Medical University

      Xinjiang Medical University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01158-x
  • Enlaces
  • Resumen
    • In this paper, the dynamical behavior of a stochastic brucellosis model that incorporates vaccination and environmental pollution transmission is investigated. Some preliminary results are first proposed, which include the existence of global positive solutions and the stability of the corresponding deterministic model. Secondly, two distinct threshold values Rs0 and m are derived for the stochastic extinction of the disease by utilizing two different calculation methods. That is, when Rs0 < 1 or m < 0, then the disease will be extinct with probability one, irrespective of whether the basic reproduction number R0 of the deterministic model is greater than 1 or less than 1. Additionally, a new threshold RS 0 is established for the persistence in the mean of disease and the existence of a stationary distribution for the model. Namely, if RS 0 > 1, the disease will persist in the mean with probability one, and any positive solution is ergodic, and possessing a unique stationary distribution. Finally, the numerical simulations are presented to validate the theoretical findings, and the impacts of key parameters and stochastic terms on the spread of brucellosis are further explored.

  • Referencias bibliográficas
    • 1. Georgios, P., Nikolaos, A., Mile, B., Epameinondas, T.: Brucellosis. New Engl. J.Med. 352(22), 2325 (2005)
    • 2. Pappas, G., Papadimitriou, P., Akritidis, N., et al.: The new global map of human brucellosis. Lancet Infect. Dis. 6, 91–99 (2006)
    • 3. Meltzer, E., Sidi, Y., Smolen, G., et al.: Sexually transmitted brucellosis in humans. Clin. Infect. Dis. 51, 12–15 (2010)
    • 4. Wyatt, H.V., Sheldon, S.C.F.: Dudley and the person to person spread of brucellosis by inhalation. J. R. Nav. Med. Serv. 96, 185–187 (2010)
    • 5. Doganay, M., Aygen, B.: Human brucellosis: an overview. Int. J. Infect. Dis. 7, 173–182 (2003)
    • 6. Sun, G., Zhang, Z.: Global stability for a sheep brucellosis model with immigration. Appl. Math. Comput. 246, 336–345 (2014)
    • 7. Jessica, M., Curtiss, R.: Characterization of Brucella abortus S19 as a challenge strain for use in a mouse model of brucellosis. Micr....
    • 8. Li, M., Sun, G., Wu, Y., et al.: Transmission dynamics of multi-group brucellosis model with mixed cross infection in public farm. Appl....
    • 9. Dobson, A., Meagher, M.: The population dynamics of brucellosis in the Yellowstone National Park. Ecology 77, 1026–1036 (1996)
    • 10. Havas, K.A., Boone, R.B., Hill, A.E., et al.: A brucellosis disease control strategy for the Kakheti Region of the country of Georgia:...
    • 11. Farman, M., Shehzad, A., Akgul, A., et al.: Analysis of a fractional order Bovine Brucellosis disease model with discrete generalized...
    • 12. Zhang,W., Zhang, J.,Wu,Y., et al.:Dynamical analysis of the SEIB model for Brucellosis transmission to the dairy cows with immunological...
    • 13. Saha, S., Dutta, P., Samanta, G.: Dynamical behavior of SIRS model incorporating government action and public response in presence of...
    • 14. Samantaa, G., Bera, S.P.: Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Anal....
    • 15. Lolika, O.P., Mushayabasa, S.: Dynamics of a reaction-diffusion Brucellosis model. J. Adv. Math. Comp. Sci. 36(8), 52–69 (2021)
    • 16. Li, C., Guo, Z., Zhang, Z.: Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis. Chaos Solit....
    • 17. Yang, J., Xu, R., Li, J.: Threshold dynamics of an age-space structured brucellosis disease model with Neumann boundary condition. Nonlinear...
    • 18. Ma, X., Sun, Q.: Global dynamics of a periodic brucellosis model with time delay and environmental factors. Appl. Math. Modelling 130,...
    • 19. Zhang, Z., Zhang, J., Li, L., et al.: Quantifying the effectiveness of brucellosis control strategies in northern China using a mechanistic...
    • 20. Lolika, O., Modnak, C.,Mushayabasa, S.: On the dynamics of brucellosis infection in bison population with vertical transmission and culling....
    • 21. Sun, Q., Li, M., Zhang, J., et al.: Transmission dynamics of brucellosis: Mathematical modelling and applications in China. Comput. Struc....
    • 22. Abatih, E., Ron, L., Speybroeck, N., et al.: Mathematical analysis of the transmission dynamics of brucellosis among bison. Math. Meth....
    • 23. Hou, Q., Sun, X., Zhang, J., et al.: Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China....
    • 24. Mohamed, M., Alaoui, A.L., Tilioua, M.: Dynamical analysis of a stochastic non-autonomous SVIR model with multiple stages of vaccination....
    • 25. Gray, A., Greenhalgh, D., Hu, L., et al.: A stochastic differential equation SIS epidemic model. SIAM J. Appl. Math. 71(3), 876–902 (2011)
    • 26. Babaei, A., Jafari, H., Banihashemi, S., et al.: A stochastic mathematic model for COVID-19 according to different age groups. Appl. Comput....
    • 27. Xue, T., Fan, X., Chang, Z.: Dynamics of a stochastic SIRS epidemic model with standard incidence and vaccination. Math. Biosci. Eng....
    • 28. Zhang, X., Wang, X., Huo, H.: Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate...
    • 29. Wang, K., Fan, H., Zhu, Y.: Dynamics and application of a generalized SIQR epidemic model with vaccination and treatment. Appl. Math....
    • 30. Selvan, T.T., Kumar, M.: Dynamics of a deterministic and a stochastic epidemic model combined with two distinct transmission mechanisms...
    • 31. Dang, L., Abdurahman, X., Teng, Z.: The threshold dynamics of a stochastic two-patch brucellosis model. Stoch. Models 38(3), 331–364 (2022)
    • 32. Alkhazzan, A.,Wang, J., Nie, Y., et al.: An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise....
    • 33. Shi, Z., Jiang, D.: Stochastic modeling of SIS epidemics with logarithmic Ornstein-Uhlenbeck process and generalized nonlinear incidence....
    • 34. Hieu, T., Nguyen, H., Nguyen, N., et al.: Hybrid stochastic SIS epidemic models with vaccination: Stability of the disease-free state...
    • 35. Papageorgiou,V.E., Tsaklidis, G.:Astochastic SIRD modelwith imperfect immunity for the evaluation of epidemics. Appl. Math. Modelling...
    • 36. Hussain, G., Khan, A., Zahri, M., et al.: Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence...
    • 37. Chen, F., Li, X.: Exponential stability and optimal control of a stochastic brucellosis model with spatial diffusion and nonlocal transmission....
    • 38. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer (2013)
    • 39. Mao, X., Marion, G., Renshaw, E.: Environmental noise suppresses explosion in population dynamics. Stoch. Proc. Appl. 97, 95–110 (2002)
    • 40. Hasminskii, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands (1980)
    • 41. Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems. SIAM J. Control. Optim. 46, 1155–1179 (2007)
    • 42. Strang, G.: Linear Algebra and its Applications. Thomson Learning, Singapore (1988)
    • 43. Cai, Y., Kang, Y., Banerjee, M., et al.: A stochastic epidemic model incorporating media coverage. Commun. Math. Sci. 14, 893–910 (2016)
    • 44. Mao, X.: Stochastic Differential Equations and Their Applications. Horwood, Chichester (1997)
    • 45. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)
    • 46. Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, London (2004)
    • 47. Ikeda, N., Watanabe, S.: A comparison theorem for solutions of stochastic differential equations and its applications. Osaka J. Math....
    • 48. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)
    • 49. Samanta, G.P.: Analysis of a delayed epidemic model with pulse vaccination. Chaos Solit. Fract. 66, 74–85 (2014)
    • 50. Djilali, S.: Generalities on a delayed spatiotemporal host-pathogen infection model with distinct dispersal rates. Math. Model. Nat. Phen....
    • 51. Wei, W., Xu, W., Liu, J., et al.: Dynamical behavior of a stochastic regime-switching epidemic model with logistic growth and saturated...
    • 52. Zhang, X., Su, T., Jiang, D.: Dynamics of a stochastic SVEIR epidemic model incorporating general incidence rate and Ornstein-Uhlenbeck...
    • 53. Dutta, P., Samanta, G., Nieto, J.J.: Periodic transmission and vaccination effects in epidemic dynamics: a study using the SIVIS model....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno