Ir al contenido

Documat


Modelling of KdV-Soliton Through Fractional Action and Emergence of Lump Waves

  • Rami Ahmad El-Nabulsi [1]
    1. [1] Biology Centre of the Czech Academy of Sciences
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01141-6
  • Enlaces
  • Resumen
    • The fractional calculus of variations is considered today as an important in applied mathematics. It consists of minimizing or maximizing functionals that depend on different types of fractional derivatives and integral operators. This mathematical subject has proved to be relevant because of its motivating implications in describing dissipative and nonconservative physical systems ranging from classical to quantum mechanics and field theories. However, in some complex dynamical systems, the analytic solutions of the consequential fractional Euler–Lagrange equation are tricky to obtain, and, besides, the generalized fractional variational problems require tricky boundary conditions and further properties in order to obtain the necessary optimality conditions of the Euler–Lagrange type for the given problem. Advanced methods in the fractional calculus of variations have been found to be very practical in studying a large number of nonlinear dynamical systems; however, describing some nonlinear wave phenomena, which are of particular relevance in various fields of science, is still not extensively elaborated in literature. In this study, a new action functional based on Kiryakova fractional operators involving the Meijer-G functions is introduced and discussed. This approach was found to be practical to study periodic dampened oscillators exhibiting traveling soliton-like solutions and a family of modified Korteweg-de Vries equations and lumps obtained within the framework of weakly nonlinear dispersive differential equations. We extended our approach to the case of time-fractal Kiryakova fractional-action integral, where a set of time-fractal Korteweg-de Vries equations exhibiting lump-like evanescent wave solutions is obtained. Our approach may be applied to other nonlinear dynamical systems.

  • Referencias bibliográficas
    • 1. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their...
    • 2. Hilfer R.: Editor Applications of Fractional Calculus in Physics. Word Scientific Publishing. New Jersey (2000)
    • 3. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890 (1996)
    • 4. Agrawal, O.P.: Formulation of Euler Lagrange equations for variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)
    • 5. Baleanu, D.,Avkar, T.: Lagrangianswith linear velocities within Riemann-Liouville fractional derivatives. Nuovo Cimento B 119, 73–79 (2004)
    • 6. Baleanu, D., Trujillo, J.: On exact solutions of a class of fractional Euler-Lagrange equations. Nonlinear Dyn. 52, 331–335 (2008)
    • 7. Atanachovic, T.M., Kanjik, S., Pilipovic, S., Simic, S.: Variational problems with fractional derivatives: Invariance conditions and Noether’s...
    • 8. Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A 39, 10375–10384 (2007)
    • 9. Almeida, R., Malinowska, A.B., Torres, D.F.M.: A fractional calculus of variations for multiple integrals with application to vibrating...
    • 10. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Comm....
    • 11. Long, Z., Zhang, Y.: Noether’s theorem for fractional variational problem from El-Nabulsi extended exponentially fractional integral in...
    • 12. Chen, J., Zhang, Y.: Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian system based on El-Nabulsi...
    • 13. Song, C., Zhang, Z.: Conserved quantities and adiabatic invariants for El-Nabulsi’s fractional Birkhoff system. Int. J. Theor. Phys. 54,...
    • 14. Long, Z.-X., Zhang,Y.:Noether’s theorem for non-conservative Hamilton system based on El-Nabulsi dynamical model extended by periodic...
    • 15. Ding, J.-J., Zhang, Y.: Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos Solitons Fractals...
    • 16. Frederico, G.S.F., Lazo, M.J.: Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for nonconservative...
    • 17. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math....
    • 18. El-Nabulsi, R.A.: A fractional approach of nonconservative Lagrangian dynamics. Fiz. A14(4), 289–298 (2005)
    • 19. El-Nabulsi, R.A.: A fractional action-like variational approach of some classical, quantum and geometrical dynamics. Int. J. Appl. Math....
    • 20. El-Nabulsi,R.A.,Torres, D.F.M.: Fractional actionlike variational approach. J.Math. Phys. 49, 053521 (2008)
    • 21. El-Nabulsi, R.A., Torres, D.F.M.: Necessary optimality condition for fractional action-like variational approach with-Liouville derivatives...
    • 22. El-Nabulsi, R.A.: Fractional action-like variational problems in holonomic, non-holonomic and semiholonomic constrained and dissipative...
    • 23. El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640...
    • 24. El-Nabulsi, R.A.: Nonstandard fractional Lagrangians. Nonlinear Dyn. 74, 381–394 (2013)
    • 25. El-Nabulsi, R.A.: Fractional action cosmology with variable order parameter. Int. J. Theor. Phys. 56, 1159–1182 (2017)
    • 26. El-Nabulsi, R.A., Anukool, W.: On the fractional perturbation theory and optical transitions in bulk semiconductors: emergence of negative...
    • 27. El-Nabulsi,R.A., Anukool,W.: The paradigm of quantum cosmology through Dunkl fractional Laplacian operators and fractal dimensions. Chaos...
    • 28. El-Nabulsi, R.A., Golmankhaneh, A.K.: On fractional and fractal Einstein’s field equations. Mod. Phys. Lett. A 36, 2150030 (2021)
    • 29. El-Nabulsi,R.A.: On generalized fractional spin, fractional angular momentum, fractionalmomentum operators and noncommutativity in quantum...
    • 30. El-Nabulsi, R.A.: Path integral method for quantum dissipative systems with dynamical friction: Applications to quantum dots/zero-dimensional...
    • 31. El-Nabulsi, R.A., Golmankhaneh, A.K.: Dynamics of particles in cold electrons plasma: fractional actionlike variational approach versus...
    • 32. Malinowska, A.B.: A formulation of the fractional Noether-type theorem for multidimensional Lagrangians. Appl. Math. Lett. 25, 1941–1946...
    • 33. Chatibi,Y., ElKinani, E.H., Ouhadan, A.:Variational calculus involving nonlocal fractional derivative with Mittag-Leffler kernel. Chaos...
    • 34. Peichen, Z., Qi, Y.: Fractional calculus in abstract space and its application in fractional Dirichlet type problems. Chaos Solitons Fractals...
    • 35. Ali, I., Rasheed, A., Anwar, M.S., Irfan, M., Hussain, Z.: Fractional calculus approach for the phase dynamics of Josephson junction....
    • 36. Zhang, Y., Sun, H.-G., Stowell, H.H., Zayernouri, M., Hansen, S.E.: A review of applications of fractional calculus in Earth system dynamics....
    • 37. Isah, S.S., Fernandez, A., Ozarslan, M.A.: On bivariate fractional calculus with general univariate analytic kernels. Chaos Solitons Fractals...
    • 38. Hernandez-Balaguera, E.: Coulostatics in bioelectrochemistry: A physical interpretation of the electrode-tissue processes from the theory...
    • 39. Torres, D.F.M., Malinowska, A.B.: Introduction to the fractional calculus of variations. Imperial College Press, London (2012)
    • 40. El-Nabulsi, R.A.: The fractional calculus of variations from extended Erdelyi-Kober operator. Int. J. Mod. Phys. B 23, 3349–3361 (2009)
    • 41. El-Nabulsi, R.A., Wu, G.-C.: Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order...
    • 42. El-Nabulsi, R.A.: Saigo-Maida operators involving the Appell function, real spectra from symmetric quantum Hamiltonians and violation...
    • 43. El-Nabulsi, R.A.: Glaeske-Kilbas-Saigo fractional integration and fractional Dixmier trace. Acta Math. Viet. 37, 149–160 (2012)
    • 44. El-Nabulsi, R.A.: Dirac operator of order 2/3 from Glaeske-Kilbas-Saigo fractional integral. Funct. Anal. Approx. Comp. 7, 15–28 (2015)
    • 45. El-Nabulsi, R.A.: Fractional variational problems from extended exponentially fractional integral. Appl. Math. Comp. 217, 9492–10406 (2011)
    • 46. El-Nabulsi, R.A.: A periodic functional approach to the calculus of variations and the problem of time-dependent damped harmonic oscillators....
    • 47. Kiryakova, V.S.: Generalized fractional calculus and applications longman scientific and technical. Harlow, London (1994)
    • 48. Kiryakova, V.S.: An application of the generalized operators of fractional integration to dual integral equations involving Meijer’s G-function....
    • 49. Kiryakova, V.S.: Unified approach to fractional calculus images of special functions-a survey. Math. 8, 2260 (2020)
    • 50. Machado, J.A.T., Kiryakova, V.: Recent history of the fractional calculus: data and statistics. In: Kochubei, A., Luchko, Y. (eds.) Handbook...
    • 51. Kiryakova, V.S.: Fractional calculus operators of special functions?-The result is well predictable! Chaos Solitons Fractals 102, 2–15...
    • 52. Kiryakova, V.S.: Use of fractional calculus to evaluate some improper integrals of special functions. AIP Conf. Proc. 1910, 050012 (2017)
    • 53. Kiryakova, V.S.: Generalized fractional calculus and applications; Longman-J. Wiley, Harlow, UK; New York, NY, USA (1994)
    • 54. Kiryakova, V.S.: On operators of fractional integration involving Meijer’s G-function. C. R. Acad. Bulg. Sci. 39, 25–28 (1986)
    • 55. Kiryakova, V.S.: A generalized fractional calculus and integral transforms. In: Stankovic, B., Pap, E., Pilipavic, S., Vladimirov, V.S....
    • 56. Beals,R., Szmigielski, J.: Meijer G-functions: a gentle introduction. Not. Am.Math. Soc. 60, 866–972 (2013)
    • 57. Shah, S.A.H., Mubeen, S., Rahman, G., Younis, J.: Relation of some known functions in terms of generalized Meijer G-functions. J. Math....
    • 58. Mathai, A.M., Saxena,R.K., Haubold, H.J.: TheH-Function theory and applications. Springer-Verlag, New York Dordrecht Heidelberg London...
    • 59. Afzali, F., Acar G., D., Feeney B., F.: Analysis of the periodic damping coefficient equation based on Floquet theory. In: International...
    • 60. Hartono, A. H. P. van der Burgh.: Periodic Solutions of an Inhomogeneous Second Order Equation with Time-Dependent Damping Coefficient.In:...
    • 61. van der HartonoBurgh, A.H.P.:Alinear differential equationwith a time-periodic damping coefficient: stability diagram and an application....
    • 62. Gomes, D., Capelas De Oliveira, E.: The second order Klein-Gordon field equation. Int. J. Math. Math. Sci. 2004, 710864 (2004)
    • 63. Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space-time. Ann Inst H Poincaré Sect A 9, 109–141 (1968)
    • 64. Fan, C., Li, L., Yu, F.: Soliton solution, breather solution and rational wave solution for a generalized Schrödinger equation with Darboux...
    • 65. Turyn, L.: The damped Mathieu equation. Quart. Appl. Math. 11, 389–398 (1993)
    • 66. Naowarat, S., Saifullah, S., Ahmad, S., De la Sen, M.: Periodic, singular and dark solitons of the generalized geophysical KdV equation...
    • 67. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Darya Ganj...
    • 68. Miura, R.M., Gardner, C.S., Kruskal, M.D.: KdV equation and generalizations. II. Existence of conservation laws and constant of motion....
    • 69. Wadati, M., Akutsu, Y.: Stochastic Korteweg-de Vries equation with and without damping. J. Phys. Soc. Japan 53, 3342–3350 (1984)
    • 70. Wazzan, L.: Exact solutions for the family of third orderKorteweg de-Vries equations.Comm. Numer. Anal. 2016, 108–117 (2016)
    • 71. Dmitriev, S.V., Kivshar, Y.S., Shigenari, T.: Fractal structures and multiparticle effects in soliton scattering. Phys. Rev. E 64, 056613...
    • 72. Zamora-Sillero, E., Shapovalov, A.V.: Soliton fractals in the Korteweg-de Vries equation. Phys. Rev. E 76, 046612 (2007)
    • 73. He, J.-H.: Variational principle for the generalized KdV-Burgers equation with fractal derivatives for shallow water waves. J. Appl. Comp....
    • 74. Martin-Vergara, F., Rus, F.,Villatoto, F.R.: Fractal structure of the soliton scattering from the graphene superlattice equation. Chaos...
    • 75. Wang, K.-L.,Wei, C.: Fractal soliton solutions for the fractal-fractional shallow water wave equation arising in ocean engineering. Alexandria...
    • 76. Zhu, Y.: J, Yang, Universal fractal structures in the weak interaction of solitary waves in generalized nonlinear Schrödinger equations....
    • 77. Falconer, K.J.: Fractal Geometry-Mathematical Foundations and Applications. Wiley, New York (2003)
    • 78. Mandelbrot, B.B.: The Fractal Geometry of Nature.W. H. Freeman and Company, New York (1983)
    • 79. Mandelbrot, B.B.: Fractals: form, chance, and dimension.W. H. Freeman andCompany, San Francisco (1977)
    • 80. He, J.-H.: A study on analytical and numerical solutions of three types of black-scholes models. Int. J. Trade, Econ. & Finance 13,...
    • 81. He, J.-H.: Fractal calculus and its geometrical explanation. Res. Phys. 10, 272–276 (2018)
    • 82. El-Nabulsi, R.A., Anukool, W.: Spiral waves in fractal dimensions and their elimination in a λ − ω systems with less damaging intervention....
    • 83. El-Nabulsi, R.A., Anukool, W.: Modeling thermal diffusion flames with fractal dimensions. Therm. Sci. Eng. Prog. 45, 102145 (2023)
    • 84. El-Nabulsi, R.A., Anukool, W.: On fractal thermodynamics of the superconducting transition and the roles of specific heat, entropy and...
    • 85. El-Nabulsi, R.A.: Fractal diffusion from a geometric Ricci flow. J. Elliptic & Parabolic Equat. 8, 847–852 (2022)
    • 86. El-Nabulsi, R.A., Anukool,W.: Time-dependent heating problem of the solar corona in fractal dimensions: a plausible solution. Adv. Space...
    • 87. El-Nabulsi, R.A., Anukool, W.: Modeling von Bertalanffy growth function of fish with fractals. Hydrobiol. 851, 2543–2559 (2024)
    • 88. Deppman, A., Megias, E., Pasechnik, R.: Fractal derivatives, fractional derivatives and q-deformed calculus. arXiv 2305, 04633 (2023)
    • 89. Chen, W.: Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 28, 923–929 (2006)
    • 90. Chen, W., Sun, H., Zhang, X., Korosak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Compt. Math. Simul. 59,...
    • 91. He, J.H.: A tutorial review on fractal space and fractional calculus. Int. J. Theor. Phys. 53, 3698–3718 (2014)
    • 92. Feng, G.-Q.: He’s frequency formula to fractal undamped Duffing equation. J. Low. Freq. Noise. Vib. & Act. Cont. 40, 1671–1676 (2021)
    • 93. Johnpillai, A.G., Khalique, C.M., Biswas, A.: Exact solutions of the mKdV equation with timedependent coefficients. Math. Commun. 16,...
    • 94. Biswas, A.: Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion. Commun. Nonlinear Sci....
    • 95. Vaganan, B.M.,Kumaran,M.S.: Exact linearization and invariant solutions of the generalized Burger’s equation with linear damping and variable...
    • 96. Ji, J.J., Zhang, L.,Wang, L.,Wu, S., Zhang, L.:Variable coefficientKdV equationwith time-dependent variable coefficient topographic forcing...
    • 97. Tang, X.-Y., Huang, F., Lou, S.-Y.: Variable coefficient KdV equation and the analytical diagnosis of a dipole blocking life cycle. Chin....
    • 98. Biswas, A.: 1-soliton solution of the K(m; n) equation with generalized evolution and time-dependent damping and dispersion. Comp. Math....
    • 99. Zhao, X., Tang, D.,Wang, L.: New soliton-like solutions for KdV equation with variable coefficient. Phys. Lett. A 346, 288–291 (2005)
    • 100. Ismael, H.F., Murad, M.A.S., Bulut, H.: Various exact wave solutions for KdV equation with timevariable coefficients. J. Ocean Eng. Sci....
    • 101. Zakharov, V.E., Manakov, S.V., Novikov, S.P., Pitaevsky, L.P.: Theory of Solitons: the inverse scattering method. Springer, New York...
    • 102. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadelphia (1981)
    • 103. Clarke, S., Gorshkov, K., Grimshaw, R., Stepanyants, Y.: Decay of Kadomtsev-Petviashvili lumps in dissipative media. Phys. D: Nonlinear...
    • 104. Sulaiman, T.A., Yusuf, A., Antagana, A.: New lump, lump-kink, breather waves and other interaction solutions to the (3+1)-dimensional...
    • 105. Riu,W., Zhang, Y.: Soliton and lump-soliton solutions in the Grammian form for the Bogoyavlenskii- Kadomtsev-Petviashvili equation. Adv....
    • 106. Rizvi, S.T.R., Seadawy, A.R., Ashraf, F., Younis, M., Iqbal, H., Baleanu, D.: Lump and interaction solutions of a geophysical Korteweg-de...
    • 107. Tang, Y., Tao, S., Guan, Q.: Lump solitons and the interaction phenomena of them for two classes of nonlinear evolution equations. Comp....
    • 108. Ghidaglia, J.-M.:Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time. J....
    • 109. Flores-Calderon, R., Fujioka, J., Espinosa-Ceron, A.: Soliton dynamics of a high-density Bose- Einstein condensate subject to a time...
    • 110. Ghosh, U.N.: Superthermal electron’s effects on lump solitons structures in magnetized auroral plasma. Adv. Space Res. 71, 244–254 (2023)
    • 111. Zhidkov, P.E.: Korteweg-de Vries and Nonlinear Schrödinger’s Equations: Qualitative Theory. Springer Verlag, New York, NY (2001)
    • 112. Grimshaw, R., Pelinovsky, E.N., Talipova, T.G.: Damping of large-amplitude solitary waves. Wave Motion 37, 351–364 (2003)
    • 113. Bekir, A.: New solitons and periodic wave solutions for some nonlinear physical models by using the sine-cosine method. Phys Script....
    • 114. Estévez, P.G., Diaz, E., Dominguez-Adame, F., Cervero, J.M., Diez, E.: Lump solitons in a higherorder nonlinear equation in 2 + 1...
    • 115. Ghidaglia, J.-M.: A note on the strong convergence towards attractors of damped forced KdV equations. J. Diff. Equat. 110(2), 356–359...
    • 116. Chehab, J.-P., Sadaka, G.: Numerical study of a family of dissipative KdV equations. Commun. Pure Appl. Anal. 12(1), 519–546 (2013)
    • 117. Chehab, J.-P., Sadaka, G.: On damping rates of dissipative KdV equations. Discrete Contin. Dyn. Syst. Ser. S. 6(6), 1487–1506 (2013)
    • 118. El-Nabulsi, R.A., Anukool, W.: A generalized nonlinear cubic-quartic Schrödinger equation and its implications in quantum wire. Eur....
    • 119. El-Nabulsi, R.A., Anukool, W.: A family of nonlinear Schrödinger equation and their solitons solutions. Chaos Solitons Fractals 166,...
    • 120. El-Nabulsi, R.A.: Emergence of lump-like solitonic wave in Heimburg-Jackson biomembranes and nerves fractal model. J. R. Soc. Interface....
    • 121. Amick, C.J., Bona, J.L., Schonbek, M.E.: Decay of solutions of some nonlinear wave equations. J. Diff. Equat. 81(1), 1–49 (1989)
    • 122. Atangana, A., Kaca, I.: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals...
    • 123. Riaz, M.B., Atangana, A., Jahngeer, A., Jarad, F., Awrejcewicz, J.: New optical solitons of fractional nonlinear Schrodinger equation...
    • 124. Ozkan, E.M., Ozkan, A.: The soliton solutions for some nonlinear fractional differential equations with beta-derivative. Axioms 10, 203...
    • 125. Zeng, H., Wang, Y., Xiao, M., Wang, Y.: Fractional solitons: new phenomena and exact solutions. Front. Phys. 11, 1177335 (2023)
    • 126. Habib, S., Batool, A., Islam, A., Nadeem, M., Gepreel, K.A., He, J.-H.: Study of nonlinear Hirota- Satsuma coupleKdV and coupled mKdV...
    • 127. Shen, Y., He, J.-H.: Variational principle for a generalized KdV equation in a fractal space. Fractals 28, 2050069 (2020)
    • 128. Ahmad, J., Akram, S., Noor, K., Nadeem,M., Bucur, A., Alsayaad, Y.: Soliton solutions of fractional extended nonlinear Schrödinger equation...
    • 129. Akbar, M., Abdullah, F.A., Haque,M.: Soliton solutions and fractional-order effect on solitons to the nonlinear optics model. Opt. Quant....
    • 130. Zaman, U.H.M., Arefin, M.A., Akbar, M.A., Uddin, M.H.: Study of the soliton propagation of the fractional nonlinear type evolution equation...
    • 131. Ullah, M., Asjad, M.I., Awrejcewicz, J., Muhammad, T., Baleanu, D.: On soliton solutions of fractional-order nonlinear model appears...
    • 132. Malomed, B.A.: Optical solitons and vortices in fractional media: a mini-review of recent results. Photonics 8, 353 (2021)
    • 133. Su, C.-Q., Wang, Y.-Y., Qin, N., Li, J.-G., Zhang, G.-D.: Nonautonomous soliton solutions for a nonintegrable Korteweg–de Vries equation...
    • 134. Kumar, S., Mohan, B.: Bilinearization and new center-controlled N-rogue solutions to a (3+1)- dimensional generalized KdV-type equation...
    • 135. Kumar, S., Mohan, B.: A novel analysis of Cole-Hopf transformations in different dimensions, solitons, and rogue waves for a (2 +...
    • 136. Mohan, B., Kumar, S., Kumar, R.: Higher-order rogue waves and dispersive solitons of a novel P-type (3+1)-D evolution equation in...
    • 137. Niwas, M., Kumar, S.: Multi-peakons, lumps, and other solitons solutions for the (2+12+1)- dimensional generalized Benjamin-Ono...
    • 138. Kumar, S., Niwas, M.:Exploring lump soliton solutions andwave interactions using newinverseG’/Gexpansion approach: applications to the...
    • 139. Hamid, L., Kumar, S.: Symbolic computation and Novel solitons, traveling waves and soliton-like solutions for the highly nonlinear (2+1)-dimensional...
    • 140. Kumar, S., Mann, N.: A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled...
    • 141. Zhang, H., Manafian, J., Singh, G., Ilhan, O.A., Zekiy, A.O.: N-lump and interaction solutions of localized waves to the (2 + 1)-dimensional...
    • 142. Chen, H., Shahi, A., Singh, G., Manafian, J.,Eslami, B.,Alkader, N.A.: Behavior of analytical schemes with non-paraxial pulse propagation...
    • 143. Mohammadzadeh, A., Taghavifar, H., Zhang, Y., Zhang, W.: A Fast nonsingleton type-3 fuzzy predictive controller for non-holonomic robots...
    • 144. Mohammadzadeh, A., Zhang, C., Alattas, K.A., El-Sousy, F.F.M., Vu, M.T.: Fourier-based type-2 fuzzy neural network: simple and effective...
    • 145. Mohammadzadeh, A., Taghavifar, H., Zhang, C., Alattas, K.A., Liu, J., Wu, M.T.: A no-linear fractional-order typ-3 fuzzy control for...
    • 146. Yan, S.R., Guo, W., Mohammadzadeh, A., Rathinasamy, S.: Optimal deep learning control for modernized microgrids. Appl. Intell. 53, 15638–15655...
    • 147. Sedaghat, M., Azar, K.K., Arandian, B., Fathi, G., Ghadamyari, M.: An innovative technique for optimization and sensitivity analysis...
    • 148. Zhang, H., Ma, Y., Yuan, K., Khayatnezhad, M., Ghadimi, N.: Efficient design of energy microgrid management system: a promoted Remora...
    • 149. Zhu, L., Zhang, F., Zhang, Q., Chen, Y., Khayatnezhad, M., Ghadimi, M.: Multi-criteria evaluation and optimization of a novel thermodynamic...
    • 150. Shi, S., Han, D., Cui, M.:Amultimodal hybrid parallel network intrusion detectionmodel. Connection Sci. 35, 2227780 (2023)
    • 151. Jiang, L.:Afast and accurate circle detection algorithm based on random sampling. Future Generation Comp. Syst. 123, 245–256 (2021)
    • 152. Hashemi, M.S.: A variable coefficient third degree generalized Abel equation method for solving stochastic Schrödinger-Hirota model....
    • 153. Mathanaranjan, T., Hashemi, M.S., Rezazadeh, H., Akinyemi, L., Bekir, A.: Chirped optical solitons and stability analysis of the nonlinear...
    • 154. Mirzazadeh, M., Hashemi, M.S., Akbulu, A., Ur Rehman, H., Iqbal, I., Eslami, M.: Dynamics of optical solitons in the extended (3+1)-dimensional...
    • 155. Hashemi, M.S., Ashpazzadeh, E., Moharrami, M., Lakestani, M.: Fractional order Alpert multiwavelets for discretizing delay fractional...
    • 156. Nisar, K.S., Alp Ilhan, O., Abdulazeez, S.T., Manafian, J., Mohammed, S.A., Osman, M.S.: Novel multiple soliton solutions for some nonlinear...
    • 157. Hong, X., Manafian, J., Ilhan, O.A., Alkireet, A.I.A., Nasution, M.K.M.: Multiple soliton solutions of the generalized Hirota-Satsuma-Ito...
    • 158. Zhang, M., Xie, X., Manafian, J., Ilhan, O.A., Singh, G.: Characteristics of the new multiple rogue wave solutions to the fractional...
    • 159. Nisar, K.S., Ilhan, O.A., Manafian, J., Shahriari, M., Soyba¸s, D.: Analytical behavior of the fractional Bogoyavlenskii equations with...
    • 160. Zhou, X., Ilhan, O.A., Manafian, J., Singh, G., Tuguz, N.S.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional...
    • 161. Kumar, S.,Kubbar, A.: Dynamics of several optical soliton solutions of a (3+1)-dimensional nonlinear Schrödinger equation with parabolic...
    • 162. Kumar, S., Hamid, I.: New interactions between various soliton solutions, including bell, kink, and multiple soliton profiles, for the...
    • 163. Hamid, I.,Kumar, S.: Symbolic computation and Novel solitons, travelingwaves and soliton-like solutions for the highly nonlinear (2+1)-dimensional...
    • 164. Kumar, S., Mann, N.: A variety of newly formed soliton solutions and patterns of dynamic waveforms for the generalized complex coupled...
    • 165. Mann, N., Rani, S., Kumar, S., Kumar, R.: Novel closed-form analytical solutions and modulation instability spectrum induced by the Salerno...
    • 166. Dhiman, S.K., Kumar, S.: Analyzing specific waves and various dynamics of multi-peakons in (3+1)- dimensional p-type equation using...
    • 167. Niwas, N., Kumar, S., Rajput, R., Chadha, D.: Exploring localized waves and different dynamics of solitons in (2 + 1)-dimensional...
    • 168. Kumar, S., Dhiman, S.K.: Exploring cone-shaped solitons, breather, and lump-forms solutions using the Lie symmetry method and unified...
    • 169. Kumar, S., Mohan, B.: A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno