Ir al contenido

Documat


Resonance in Isochronous Systems with Decaying Oscillatory Perturbations

  • Oskar A. Sultanov [1]
    1. [1] Ufa Federal Research Centre
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01159-w
  • Enlaces
  • Resumen
    • Non-autonomous perturbations of isochronous systems in the plane are considered. It is assumed that the intensity of perturbations decays with time, and the frequency is asymptotically constant with the limiting value satisfying a resonance condition. We discuss the emergence of attracting resonant solutions with an asymptotically constant amplitude. By combining the averaging technique and the Lyapunov functionmethod, we show that this behaviour can occur in the phase locking and phase drifting regimes.

      The conditions that guarantee the existence and stability of such resonant dynamics are described.

  • Referencias bibliográficas
    • 1. Calogero, F.: Isochronous systems. Oxford Press, Oxford (2008)
    • 2. Chirikov, B.V.:Auniversal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979)
    • 3. Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear physics: from the pendulum to turbulence and chaos. Harwood Academic Publishers,...
    • 4. Liu, B.: Quasi-periodic solutions of forced isochronous oscillators at resonance. J. Differ. Equ. 246, 3471–3495 (2009)
    • 5. Bonheure, D., Fabry, C.: Littlewood’s problem for isochronous oscillators. Arch. Math. 93, 379–388 (2009)
    • 6. Ortega, R., Rojas, D.: Periodic oscillators, isochronous centers and resonance. Nonlinearity 32, 800– 832 (2019)
    • 7. Fabry, C., Fonda, A.: Unboundedmotions of perturbed isochronous Hamiltonian systems at resonance. Adv. Nonlinear Stud. 5, 351–373 (2005)
    • 8. Rojas, D.: Resonance of bounded isochronous oscillators. Nonlinear Anal. 192, 111680 (2020)
    • 9. Markus, L.: Asymptotically autonomous differential systems. In: S. Lefschetz (ed.), Contributions to the theory of nonlinear oscillations...
    • 10. Pustyl’nikov, L.D.: Stable and oscillating motions in nonautonomous dynamical systems. A generalization of C. L. Siegel’s theorem to the...
    • 11. Thieme, H.: Asymptotically autonomous differential equations in the plane. RockyMountain J. Math. 24, 351–380 (1994)
    • 12. Langa, J.A., Robinson, J.C., Suárez, A.: Stability, instability and bifurcation phenomena in nonautonomous differential equations. Nonlinearity...
    • 13. Kloeden, P.E., Siegmund, S.: Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems. Int. J. Bifur...
    • 14. Rasmussen, M.: Bifurcations of asymptotically autonomous differential equations. Set-Valued Anal. 16, 821–849 (2008)
    • 15. Sultanov, O.A.: Stability and bifurcation phenomena in asymptotically Hamiltonian systems. Nonlinearity 35, 2513–2534 (2022)
    • 16. Pinto, M.: Asymptotic integration of second-order linear differential equations. J. Math. Anal. Appl. 111, 388–406 (1985)
    • 17. Nesterov, P.N.: Averaging method in the asymptotic integration problem for systems with oscillatorydecreasing coefficients. Differ. Equ....
    • 18. Burd, V., Nesterov, P.: Parametric resonance in adiabatic oscillators. Results. Math. 58, 1–15 (2010)
    • 19. Sultanov, O.A.: Bifurcations in asymptotically autonomous Hamiltonian systems under oscillatory perturbations. Discrete Contin. Dyn. Syst....
    • 20. Sultanov, O.A.: Decaying oscillatory perturbations of Hamiltonian systems in the plane. J. Math. Sci. 257, 705–719 (2021)
    • 21. Sultanov, O.A.: Asymptotic analysis of systems with damped oscillatory perturbations. J. Math. Sci. 269, 111–128 (2023)
    • 22. Fedoryuk, M.V.: Asymptotic methods in analysis. In: Gamkrelidze, R.V. (ed.) Encyclopaedia of mathematical sciences, analysis I, pp. 83–191....
    • 23. Bogolubov, N.N., Mitropolsky,Yu.A.: Asymptotic methods in theory of non-linear oscillations.Gordon and Breach, New York (1961)
    • 24. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical aspects of classical and celestial mechanics. Springer, Berlin (2006)
    • 25. Burd, V.: Method of averaging for differential equations on an infinite interval: theory and applications. Chapman and Hall/CRC, New York...
    • 26. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: a universal concept in nonlinear sciences. Cambridge University Press, Cambridge...
    • 27. Wintner, A.: The adiabatic linear oscillator. Am. J. Math. 68, 385–397 (1946)
    • 28. Harris, W.A., Lutz, D.A.: Asymptotic integration of adiabatic oscillators. J. Math. Anal. Appl. 51, 76–93 (1975)
    • 29. Pelinovsky, E., Melnikov, I.: Resonance in oscillators with nonlinearity manifested at intermediate amplitudes. Sib. Electron. Math. Rep....
    • 30. Khalil, H.K.: Nonlinear systems. Prentice Hall, Upper Saddle River, New Jersey (2002)
    • 31. Kalyakin, L.A.: Lyapunov functions in theorems of justification of asymptotics. Mat. Notes 98, 752– 764 (2015)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno