Ir al contenido

Documat


Global Dynamics and Integrability of a Leslie-Gower Predator–Prey Model with Linear Functional Response and Generalist Predator

  • Martha Álvarez Ramírez [1] ; Johanna D. García Saldaña [2] ; Mario Medina [1]
    1. [1] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

    2. [2] Universidad Católica de la Santísima Concepción

      Universidad Católica de la Santísima Concepción

      Comuna de Concepción, Chile

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01155-0
  • Enlaces
  • Resumen
    • We deal with a Leslie-Gower predator–prey model with a generalist or alternating food for predator and linear functional response. Using a topological equivalent polynomial system we prove that the system is not Liouvillian (hence also not Darboux) integrable.

      In order to study the global dynamics of this model, we use the Poincaré compactification of R2 to characterize all phase portraits in the Poincaré disc, obtaining two different topological phase portraits.

  • Referencias bibliográficas
    • 1. Álvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifur. Chaos Appl. Sci. Eng. 21(11), 3103–3118 (2011)....
    • 2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Ma˘ıer, A.G.: Qualitative theory of second-order dynamic systems. Halsted Press [John Wiley...
    • 3. Arancibia-Ibarra, C., Flores, J.: Modelling and analysis of a modied May- Holling-Tanner predatorprey model with Allee e ect in the prey...
    • 4. Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: On the integrability of two-dimensional flows. J. Differ. Equ. 157(1), 163–182 (1999)....
    • 5. Christopher, C., Llibre, J., Pereira, J.V.:Multiplicity of invariant algebraic curves in polynomial vector fields. Pac. J. Math. 229(1),...
    • 6. Cima, A., Llibre, J.: Bounded polynomial vector fields. Trans. Amer. Math. Soc. 318(2), 557–579 (1990). https://doi.org/10.2307/2001320
    • 7. Das, A., Mandal, S., Roy, S.: Bifurcation analysis within a modied mayholling- tanner prey-predator system via allee e ect and harvesting...
    • 8. Diz-Pita, E.: Global dynamics of a predator-prey system with immigration in both species. Electron. Res. Arch. 32(2), 762–778 (2024). https://doi.org/10.3934/era.2024036
    • 9. Diz-Pita, E., Llibre, J., Otero-Espinar, M.V.:Global phase portraits of a predator-prey system. Electron. J. Qual. Theory Differ. Equ....
    • 10. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative theory of planar differential systems. Universitext. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-32902-2
    • 11. Freedman, H.I.: Deterministic mathematical models in population ecology,Monographs and Textbooks in Pure and Applied Mathematics, vol....
    • 12. Gonzalez-Olivares, E., Rojas-Palma, A.: Global stability in a modified Leslie-Gower type predation model assuming mutual interference...
    • 13. Korobeinikov, A.: A Lyapunov function for Leslie-Gower predator-prey models. Appl. Math. Lett. 14(6), 697–699 (2001). https://doi.org/10.1016/S0893-9659(01)80029-X
    • 14. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31...
    • 15. Leslie, P.H., Gower, J.: The properties of a stochastic model for the predator-prey type of interaction between two species. Biometrika...
    • 16. Llibre, J., Valls, C.: Phase portraits of the Leslie-Gower system. Acta Math. Sci. Ser. B (Engl. Ed.) 42(5), 1734–1742 (2022). https://doi.org/10.1007/s10473-022-0502-4
    • 17. Llibre, J., Valls, C.: Phase portraits of the Leslie-Gower system. Acta Math. Sci. Ser. B (Engl. Ed.) 42(5), 1734–1742 (2022). https://doi.org/10.1007/s10473-022-0502-4
    • 18. Perko, L.: Texts in Applied Mathematics, vol. 7. Springer, Berlin (1993)
    • 19. Sáez, E., González-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59(5), 1867–1878 (1999). https://doi.org/10.1137/S0036139997318457
    • 20. Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Amer. Math. Soc. 333(2), 673–688 (1992). https://doi.org/10.2307/2154053
    • 21. Valenzuela, L.M., Blé, G., Falconi, M.: On the bifurcation structure of a Leslie- Tanner model with a generalist predator. Internat. J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno