Ir al contenido

Documat


A Stochastic Model for Transmission Dynamics of AIDS with Protection Consciousness and Log-normal Ornstein–Uhlenbeck Process

  • Xue Jiao [1] ; Xinhong Zhang [1] ; Daqing Jiang [1]
    1. [1] China University of Petroleum

      China University of Petroleum

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01156-z
  • Enlaces
  • Resumen
    • In this study, a log-normal Ornstein–Uhlenbeck process and protection consciousness are included in a stochastic pandemic model of AIDS. For the 5-dimensional deterministic system, the local asymptotic stability of endemic equilibrium point is proved by Lyapunov functionmethod instead of Routh–Hurwitz criterion. For stochastic system, we firstly verify the existence and uniqueness of global positive solution. Next, we give the sufficient condition for the presence of stationary distribution by constructing suitable Lyapunov function, and the sufficient condition for disease extinction is also given. Furthermore, the precise expression of the probability density function near the quasi-equilibrium is derived. Finally, the theoretical results are verified by numerical simulations, and the impact of log-normal Ornstein–Uhlenbeck process on the dynamic behavior of the stochastic model is also examined.

  • Referencias bibliográficas
    • 1. Morison, L.: The global epidemiology of HIV/AIDS. British Med. Bull. 58, 7–18 (2001)
    • 2. Mann, J.M.: AIDS-the second decade: a global perspective. J. Infect. Dis. 165, 245–250 (1992)
    • 3. On HIV/AIDS, J.U.N.P., et al.: The path that ends AIDS:UNAIDS GlobalAIDSUpdate 2023, Geneva, Switzerland: UNAIDS (2023)
    • 4. Ala, J.: AIDS as a new security threat. Southern Africa’s evolving security challenges, From Cape to Congo (2003)
    • 5. Sharma, S., Samanta, G.: Dynamical behaviour of an HIV/AIDS epidemic model. Differ. Equ. Dyn. Syst. 22, 369–395 (2014)
    • 6. Luo, Y., Huang, J., Teng, Z., Liu, Q.: Role of ART and PrEP treatments in a stochastic HIV/AIDS epidemic model. Math. Comput. Simul. 221,...
    • 7. Broder, S., Mitsuya, H., Yarchoan, R., Pavlakis, G.N.: Antiretroviral therapy in AIDS. Annal. Internal Med. 113, 604–618 (1990)
    • 8. Broder, S.: The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antivir. Res. 85, 1–18 (2010)
    • 9. Carpenter, C.C., Cooper, D.A., Fischl,M.A., Gatell, J.M.,Gazzard, B.G., Hammer, S.M., Hirsch,M.S., Jacobsen, D.M., Katzenstein, D.A., Montaner,...
    • 10. Kar, S., Maiti, D.K., Maiti, A.P.: Impacts of non-locality and memory kernel of fractional derivative, awareness and treatment strategies...
    • 11. Dangerfield, B., Roberts, C.: A role for system dynamics in modelling the spread of AIDS. Trans. Inst. Meas. Control 11, 187–195 (1989)
    • 12. Wang, J., Modnak, C.: Modeling cholera dynamics with controls. Can. Appl. Math. Q. 19, 255–273 (2011)
    • 13. Shi, Z., Jiang, D.: Dynamics and density function of a stochastic COVID-19 epidemic model with Ornstein–Uhlenbeck process. Nonlinear Dyn....
    • 14. Wang, Y., Zhou, Y., Wu, J., Heffernan, J.: Oscillatory viral dynamics in a delayed HIV pathogenesis model. Math. Biosci. 219, 104–112...
    • 15. Zhu, H., Zou, X.: Dynamics of a HIV-1 infection model with cell-mediated immune response and intracellular delay. Discrete Contin. Dyn....
    • 16. Nyabadza, F.,Mukandavire,Z.,Hove-Musekwa, S.: Modelling the HIV/AIDS epidemic trends in South Africa: insights from a simple mathematical...
    • 17. Huo, H., Feng, L.: Global stability for an HIV/AIDS epidemic model with different latent stages and treatment. Appl. Math. Modell. 37,...
    • 18. Khan,M.A., Odinsyah, H.P., et al.: Fractionalmodel of HIV transmission with awareness effect. Chaos Solitons Fractals 138, 109967 (2020)
    • 19. Zhai, X., Li, W., Wei, F., Mao, X.: Dynamics of an HIV/AIDS transmission model with protection awareness and fluctuations. Chaos Solitons...
    • 20. DeJesus, E.X., Kaufman, C.: Routh–hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations....
    • 21. Zhou, Y., Jiang, D.: Dynamic property of a stochastic cooperative species system with distributed delays and ornstein–uhlenbeck process,...
    • 22. Feng, T., Qiu, Z., Wang, H.: Tipping points in seed dispersal mutualism driven by environmental stochasticity. SIAM J. Appl. Math. 84,...
    • 23. Feng, T., Zhou, H., Qiu, Z., Kang, Y.: Impacts of demographic and environmental stochasticity on population dynamics with cooperative...
    • 24. Wang, Y., Jiang, D., Hayat, T., Alsaedi, A.: Stationary distribution of an HIV model with general nonlinear incidence rate and stochastic...
    • 25. Zhou, Y., Zhang, W., Yuan, S.: Survival and stationary distribution of a SIR epidemic model with stochastic perturbations. Appl. Math....
    • 26. Leng, X., Feng, T., Meng, X., et al.: Global analysis of a novel nonlinear stochastic SIVS epidemic system with vaccination control. Math....
    • 27. Mamis, K., Farazmand, M.: Stochastic compartmental models of the COVID-19 pandemic must have temporally correlated uncertainties. Proc....
    • 28. Wang, W., Cai, Y., Ding, Z., Gui, Z.: A stochastic differential equation SIS epidemic model incorporating Ornstein–Uhlenbeck process....
    • 29. Zhang, X., Yang, Q., Su, T.: Dynamical behavior and numerical simulation of a stochastic ecoepidemiological model with Ornstein–Uhlenbeck...
    • 30. Zhou, B., Jiang, D., Han, B., Hayat, T.: Threshold dynamics and density function of a stochastic epidemic modelwith media coverage andmean-revertingOrnstein–Uhlenbeck...
    • 31. Zhang, X., Yuan, R.: A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod–Haldane response function....
    • 32. Lehle, B., Peinke, J.: Analyzing a stochastic process driven by Ornstein–Uhlenbeck noise. Phys. Rev. E 97, 012113 (2018)
    • 33. Wang, H., Zuo, W., Jiang, D.: Dynamical analysis of a stochastic epidemic HBV model with lognormal Ornstein–Uhlenbeck process and vertical...
    • 34. Zhang, X., Su, T., Jiang, D.: Dynamics of a stochastic SVEIR epidemic model incorporating general incidence rate and Ornstein–Uhlenbeck...
    • 35. Mao, X.: Stochastic differential equations and applications. Elsevier (2007)
    • 36. Zhou, B., Zhang, X., Jiang, D.: Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence...
    • 37. Ma, Z., Zhou, Y., Li, C.: Qualitative and stability methods for ordinary differential equations, (2015)
    • 38. Han, B., Jiang, D.: Complete characterization of dynamical behavior of stochastic epidemic model motivated by black-karasinski process:...
    • 39. Gardiner, C.W., et al.: Handbook of stochastic methods. Springer, Berlin (1985)
    • 40. Zhou, B., Jiang, D., Dai, Y., Hayat, T.: Stationary distribution and density function expression for a stochastic SIQRS epidemic model...
    • 41. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno