Ir al contenido

Documat


Robust Mixture Regression Based on the Skew t Distribution

  • FATMA ZEHRA Doğru [1] ; OLCAY ARSLAN [2]
    1. [1] Giresun University

      Giresun University

      Turquía

    2. [2] Ankara University

      Ankara University

      Turquía

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 40, Nº. 1, 2017, págs. 45-64
  • Idioma: inglés
  • DOI: 10.15446/rce.v40n1.53580
  • Títulos paralelos:
    • Mixtura robusta de modelos de regresión basada en la distribución t asimétrica
  • Enlaces
  • Resumen
    • español

      En este estudio se explora una mixtura robusta de modelos de regresión basada en la distribución t asimétrica, con el propósito de modelar colas pesadas o asimétricas en los errores, en un escenario de mixtura de regresiones. Se usa un algoritmo EM para obtener los estimadores máximo verosímiles empleando una mixtura de escala de la distribución t asimétrica. El comportamiento de los estimadores propuestos se ilustra a través de une estudio de simulación y de un ejemplo con datos reales.

    • English

      In this study, we explore a robust mixture regression procedure based on the skew t distribution in order to model heavy-tailed and/or skewed errors in a mixture regression setting. We present an EM-type algorithm to compute the maximum likelihood estimators for the parameters of interest using the scale mixture representation of the skew t distribution. The performance of proposed estimators is demonstrated by a simulation study and a real data example.

  • Referencias bibliográficas
    • Akaike, H.. (1973). Information theory and an extension of the maximum likelihood principle. 'Proceeding of the Second International Symposium...
    • Azzalini, A.. (1986). 'Further results on a class of distributions which includes the normal ones'. Statistica. 46. 199-208
    • Azzalini, A.,Capitaino, A.. (2003). 'Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution'....
    • Bai, X.. (2010). Robust mixture of regression models.
    • Bai, X.,Yao, W.,Boyer, J. E.. (2012). 'Robust fitting of mixture regression models'. Computational Statistics and Data Analysis. 56....
    • Basford, K. E.,Greenway, D. R.,McLachlan, G. J.,Peel, D.. (1997). 'Standard errors of fitted means under normal mixture'. Computational...
    • Bashir, S.,Carter, E.. (2012). 'Robust mixture of linear regression models'. Communications in Statistics-Theory and Methods. 41....
    • Bozdogan, H.. (1993). 'Information and Classification'. Springer Berlin Heidelberg.
    • Cohen, A. C.. (1984). 'Some effects of inharmonic partials on interval perception'. Music Perception. 1. 323-349
    • Dempster, A. P.,Laird, N. M.,Rubin, D. B.. (1977). 'Maximum likelihood from incomplete data via the E-M algorithm'. Journal of the...
    • Dias, J. G.,Wedel, M.. (2004). 'An empirical comparison of em, sem and mcmc performance for problematic gaussian mixture likelihoods'....
    • Dogru, F. Z.. (2015). Robust Parameter Estimation in Mixture Regression Models.
    • Dogru, F. Z.,Arslan, O.. (2014). Robust mixture regression modelling based on the skew t distribution. 'International Conference on Robust...
    • Gupta, A.. (2003). 'Multivariate skew t distribution'. Statistics. 37. 359-363
    • Gupta, A.,Chang, F.,Huang, W.. (2002). 'Some skew symmetric models'. Random Operators Stochastic Equations. 10. 133-140
    • (2013). Henning, C.. fpc: Flexible procedure for clustering.
    • Henze, N.. (1986). 'A probabilistic representation of the skew-normal distribution'. Scandinavian Journal of Statistics. 13. 271-275
    • Lange, K. L.,Little, J. A.,Taylor, M. G. J.. (1989). 'Robust statistical modeling using the t distribution'. Journal of the American...
    • Lin, T. I.,Lee, J. C.,Hsieh, W. J.. (2007). 'Robust mixture modeling using the skew t distribution'. Statistics and Computing. 17....
    • Liu, M.,Lin, T. I.. (2014). 'A skew-normal mixture regression model'. Educational and Psychological Measurement. 74. 139-162
    • Lucas, A.. (1997). 'Robustness of the student t based m-estimator'. Communications in Statistics: Theory and Methods. 26. 1165-1182
    • Markatou, M.. (2000). 'Mixture models, robustness, and the weighted likelihood methodology'. Biometrics. 56. 483-486
    • Peel, D.,McLachlan, G. J.. (2000). 'Robust mixture modelling using the t distribution'. Statistics and Computing. 10. 339-348
    • Pereira, J. R.,Marques, L. A.,da Costa, J. M.. (2012). 'An empirical comparison of EM initialization methods and model choice criteria...
    • Quandt, R. E.. (1972). 'A new approach to estimating switching regressions'. Journal of the American Statistical Association. 67....
    • Quandt, R. E.,Ramsey, J. B.. (1978). 'Estimating mixtures of normal distributions and switching regressions'. Journal of the American...
    • Schwarz, G.. (1978). 'Estimating the dimension of a model'. Annals of Statistics. 6. 461-464
    • Shen, H.,Yang, J.,Wang, S.. (2004). 'International Conference on Artificial Intelligence: Methodology, Systems, and Applications'....
    • Song, W.,Yao, W.,Xing, Y.. (2014). 'Robust mixture regression model fitting by laplace distribution'. Computational Statistics and...
    • Wei, Y.. (2012). Robust mixture regression models using t-distribution.
    • Yao, W.,Wei, Y.,Yu, C.. (2014). 'Robust mixture regression using the t-distribution'. Computational Statistics and Data Analysis....
    • Zeller, C. B.,Cabral, C. R. B.,Lachos, V. H.. (2016). 'Robust mixture regression modeling based on scale mixtures of skew normal distributions'....
    • Zhang, J.. (2013). Robust mixture regression modeling with pearson type vii distribution.
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno