Ir al contenido

Documat


Estimation a Stress-Strength Model for P(Yr: n_1< Xk:n_2) Using the Lindley Distribution

  • MARWA KH HASSAN [1]
    1. [1] Ain Shams University

      Ain Shams University

      Egipto

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 40, Nº. 1, 2017, págs. 105-121
  • Idioma: inglés
  • DOI: 10.15446/rce.v40n1.54349
  • Títulos paralelos:
    • En estimación del estrés fuerza modelo en la caja P(Yr: n_1< Xk:n_2) de distribución Lindley
  • Enlaces
  • Resumen
    • español

      El problema de la fiabilidad de estimación en el modelo de estrés-fuerza multicomponente, cuando el sistema consta de componentes k tiene fuerza, cada componente experimentando un estrés al azar se considera en este documento. Se obtiene la fiabilidad de estos sistemas cuando las variables de fuerza y tensión están dadas por la distribución Lindley. El sistema es considerado como vivo solo si al menos r de k (r < k) fuerzas superan el estrés. La fiabilidad de varios componentes del sistema viene dado por Rr, k . El estimador de máxima verosimilitud (MLE), se obtienen estimadores insesgados de varianza uniformemente mínima (UMVUE) y el estimador de Bayes Rr, k . Se realizó un estudio de simulación para comparar los diferentes estimadores de Rr, k . Se utilizaron datos reales como aplicación práctica para el modelo propuesto.

    • English

      The problem of estimation reliability in a multicomponent stress-strength model, when the system consists of k components have strength each component experiencing a random stress, is considered in this paper. The reliability of such a system is obtained when strength and stress variables are given by Lindley distribution. The system is regarded as alive only if at least r out of k (r< k) strength exceeds the stress. The multicomponent reliability of the system is given by Rr,k. The maximum likelihood estimator (MLE), uniformly minimum variance unbiased estimator (UMVUE) and Bayes estimator of Rr,k are obtained. A simulation study is performed to compare the different estimators of Rr,k. Real data is used as a practical application of the proposed model.

  • Referencias bibliográficas
    • Al-Mutairi, D. K.,Ghitany, M. E.,Kundu, D.. (2013). 'Inferences on stress-strength reliability from lindley distributions'. Communications...
    • Ali, M.,Pal, M.,Woo, J.. (2012). 'Estimation of P(Y < X) in a four-parameter generalized Gamma distribution'. Austrian Journal...
    • Basu, A. P.. (1964). 'Estimates of reliability for some distributions useful in reliability'. Technometrics. 6. 215-219
    • Beg, M. A.. (1980). 'On the estimation of P(Y < X) for two-parameter exponential distribution'. Metrika. 80. 29-34
    • Bhattacharyya, G. K.,Johnson, R. A.. (1974). 'Estimation of reliability in a multicomponent stress-strength model'. Journal of the...
    • Birnbaum, Z. W.. (1956). 'Proceedings of Third Berkeley Symposium on Mathematical Statistics and Probability'. University of California...
    • Dey, S.,Mazucheli, J.,Anis, M. Z.. (2017). 'Estimation of reliability of multicomopnent stress-strength for kumaraswamy distribution'....
    • Downtown, F.. (1973). 'The estimation of P(Y < X) in the normal case'. Technometrics. 15. 551-558
    • Eryilmaz, S.. (2008). 'Multivariate stress-strength reliability model and its evaluation for coherent structures'. Journal of Multivariate...
    • Ghitany, M. E.,Al-Mutairi, D. K.,Aboukhamseen, S. M.. (2015). 'Estimation of the reliability of a stress-strength system from power Lindley...
    • Ghitany, M. E.,Atieh, B. a. N. S.. (2008). 'Lindley distribution and it's application'. Journal of Mathematics and Computers in...
    • Hussian, M. A.. (2013). 'On estimation of stress-strength model for generalized inverted Exponential distribution'. Journal of Reliability...
    • Iwase, K.. (1987). 'On UMVU estimators of Pr (Y< X) in the 2-parameter exponential case'. Memoirs of the Faculty of Engineering,...
    • Jeffrey, H.. (1961). Theory of probability. 3. Oxford University Press.
    • Kizilaslan, F.,Nadar, M.. (2015). 'Classical and bayesian estimation of reliability in multicomponent stress-strength model based on Weibull...
    • Krishna, H.,Kumar, K.. (2011). 'Reliability estimation in Lindley distribution with progressively type-II right censored sample'....
    • Lawless, J. F.. (1982). Statistical Models and Methods for Lifetime Data. John Wiley & Sons, Inc.
    • Lindley, D. V.. (1958). 'Fiducial distributions and bayes' theorem'. Journal of the Royal Statistical Society. Series B (Methodological)....
    • Lindley, D. V.. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint. Combridge University Press.
    • Lindley, D. V.. (1980). 'Approximate bayesian methods'. Trabajos de estadística y de investigación operativa. 31. 223-245
    • McCool, J. I.. (1991). 'Inference on P(X < Y ) in the Weibull case'. Communications in Statistcs Simulation and Computation. 20....
    • Najarzadegan, H.,Babaii, S.,Rezaei, S.,Nadarajah, S.. (2016). 'Estimation of P(Y < X) for the Levy distribution'. Hacettepe Bulletin...
    • Pakdaman, Z.,Ahmadi, J.. (2013). 'Stress-strength reliability for P[X_r:n_1,k:n_2] in exponential case'. Journal of The Turkish Statistical...
    • Pandey, M.,Uddin, M. B.,Ferdous, J.. (1992). 'Reliability estimation of AN s-out-of-k system with non-identical component strengths: the...
    • Proschan, F.. (1963). 'Theoretical explanation of observed decreasing failure rate'. Technometrics. 5. 375-383
    • Rao, C. R.. (1973). Linear statistical inference and application. Jon Wiley and Sons.
    • Rao, G. S.. (2012). 'Estimation of reliability in multicomponent stress-strength based on generalized Exponential distribution'. Revista...
    • Rao, G. S.,Kantan, R. R. L.. (2010). 'Estimation of reliability in multicomponent stress-strength model: Log-logistic distribution'....
    • Rao, G. S.,Muhammad, A.,Osama, H.. (2016). 'Estimation of reliability in multicomponent stress-strength based on two parameter exponentiated...
    • Shahsanaei, F.,Daneshkhah, A.. (2013). 'Estimation of stress-strength model in the generalized linear failure rate distribution'....
    • Sharma, V. K.,Singh, S. K.,Singh, U.,Agiwal, V.. (2014). 'The inverse Lindley distribution: a stress-strength reliability model'....
    • Sharma, V. K.,Singh, S. K.,Singh, U.,Agiwal, V.. (2015). 'The inverse lindley distribution: a stress-strength reliability model with application...
    • Singh, B.,Gupta, P. K.,Sharma, V. K.. (2014). 'On type-ii hybrid censored lindley distribution'. Statistics Research Letters. 3. 58-62
    • Singh, P. K.,Singh, S. K.,Singh, U.. (2008). 'Bayes estimator of inverse gaussian parameters under general entropy loss function using...
    • Tong, H.. (1974). 'A note on the estimation of P(Y < X) in the Exponential case'. Technometrics. 16. 625-625
    • Tong, H.. (1977). 'On the estimation of P(Y < X) for Exponential families'. IEEE Transactions on Reliability. 1. 54-56
    • Wong, A.. (2012). 'Interval estimation of P (Y< X) for generalized Pareto distribution'. Journal of Statistical Planning and Inference....
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno