Ir al contenido

Documat


Local Dependence in Bivariate Copulae with Beta Marginals

  • EIRINI KOUTOUMANOU [1] ; ANGIE WADE [1] ; MARIO CORTINA-BORJA [1]
    1. [1] University College London

      University College London

      Reino Unido

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 40, Nº. 2, 2017, págs. 281-296
  • Idioma: inglés
  • DOI: 10.15446/rce.v40n2.59404
  • Títulos paralelos:
    • Dependencia local en copulas bivariadas con marginales Beta
  • Enlaces
  • Resumen
    • español

      La función de dependencia local (FDL) describe cambios en la estructura de la correlación entre dos variables aleatorias continuas sobre su recorrido conjunto. Funciones bivariadas de densidad de probabilidad con densidades marginales Beta pueden utilizarse apar modelar conjuntamente una amplia variedad de variables respuesta acotadas en el intervalo (0, 1), por ejemplo proporciones. En este artículo obtenemos expresiones para la FDL de densidades bivariadas utilizando tres modelos de cópulas (Frank, Gumbel y Joe) con densidades marginales Beta, presentamos ejemplos para cada una de estas funciones, y discutimos una aplicación de estos modelos al análisis de datos recolectados en un estudio de calificaciones para un examen de estadística aplicado a estudiantes de postgrado.

    • English

      The local dependence function (LDF) describes changes in the correlation structure of continuous bivariate random variables along their range. Bivariate density functions with Beta marginals can be used to model jointly a wide variety of data with bounded outcomes in the (0,1) range, e.g. proportions. In this paper we obtain expressions for the LDF of bivariate densities constructed using three different copula models (Frank, Gumbel and Joe) with Beta marginal distributions, present examples for each, and discuss an application of these models to analyse data collected in a study of marks obtained on a statistics exam by postgraduate students.

  • Referencias bibliográficas
    • Ali, M. M.,Mikhail, N.,Haq, M. S.. (1978). 'A class of bivariate distributions including the bivariate logistic'. Journal of Multivariate...
    • Azzalini, A.,Dalla Valle, A.. (1996). 'The multivariate skew-normal distribution'. Biometrika. 83. 715-726
    • D'Este, G. M.. (1981). 'A Morgenstern-type bivariate gamma distribution'. Biometrika. 68. 339-340
    • El-Bassiouny, A.,Jones, M.. (2009). 'A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom,...
    • Escarela, G.,Hern\'andez, A.. (2009). 'Modelling random couples using copulas'. Revista Colombiana de Estad\'\istica. 32....
    • Fairlie, D.. (1960). 'The performance of some correlation coefficients for a general bivariate distribution'. Biometrika. 18. 307-323
    • Fisher, N.,Switzer, P.. (1985). 'Chi-plots for assessing dependence'. Biometrika. 72. 253-265
    • Frank, M.. (1979). 'On the simultaneous associativity of F\,(x,y) and x + y - F\,(x,y)'. Aequationes Matematicae. 19. 194-226
    • Genest, C.,Boies, J.. (2003). 'Detecting dependence with Kendall plots'. The American Statistician. 57. 275-284
    • Gumbel, E.. (1960). 'Distributions des valeurs extr\^emes en plusieurs dimensions'. Publications de l'Institut de statistique...
    • Gupta, A.,Orozco-Castañeda, J.,Nagar, D.. (2011). 'Non-central bivariate Beta distribution'. Statistical Papers. 52. 139-152
    • Gupta, A.,Wong, C.. (1985). 'On three and five parameter bivariate Beta distributions'. Metrika. 32. 85-91
    • Gupta, R.,Kirmani, S.,Srivastava, H.. (2010). 'Local dependence functions for some families of bivariate distributions and total positivity'....
    • Holland, P. W.,Wang, Y. J.. (1987). 'Dependence function for continuous bivariate densities'. Communications in Statistics-Theory...
    • Joe, H.. (1993). 'Parametric families of multivariate distributions with given margins'. Journal of Multivariate Analysis. 46. 262-282
    • Joe, H.. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman and Hall\,/\,CRC.
    • Jones, M.. (1996). 'The local dependence function'. Biometrika. 83. 889-904
    • Jones, M.. (1998). 'Constant local dependence'. Journal of Multivariate Analysis. 64. 148-155
    • Jones, M.. (2002). 'Multivariate t and Beta distributions associated with the multivariate F distribution'. Metrika. 54. 215-231
    • Jones, M.,Koch, I.. (2003). 'Dependence maps: Local dependence in practice'. Statistics and Computing. 13. 241-255
    • Kuha, J.. (2004). 'AIC and BIC: comparisons of assumptions and performance'. Sociological Methods & Research. 33. 188-229
    • Kumar, P.. (2010). 'Probability distributions and the estimation of Ali-Mikhail-Haq Copula'. Applied Mathematical Statistics. 4. 657-666
    • Mardia, K.. (1970). 'Measures of multivariate skewness and kurtosis with applications'. Biometrika. 57. 519-530
    • Mardia, K.. (1974). 'Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies'....
    • Morgernstern, D.. 'Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies'....
    • Nelsen, R.. (2013). An Introduction to Copulas. Springer.
    • Olkin, I.,Liu, R.. (2003). 'A bivariate beta distribution'. Statistics & Probability Letters. 62. 407-412
    • (2007). R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.
    • Rose, C.,Smith, M.. (2002). Mathematical Statistics with Mathematica. Springer.
    • Schucany, W.,Parr, W.,Boyer, J.. (1978). 'Correlation structure in Farlie-Gumbel-Morgenstern distributions'. Biometrika. 65. 650-653
    • Schweizer, B.,Wolff, E.. (1981). 'On nonparametric measures of dependence for random variables'. The Annals of Statistics. 8. 878-885
    • Sklar, A.. (1959). 'Fonctions de rèpartitionà n dimensions et leurs marges'. Publications de l'Institut de statistique de l'Universitè...
    • Tj\ostheim, D.,Hufthammer, K. O.. (2013). 'Local Gaussian correlation: A new measure of dependence'. Journal of Econometrics. 172....
    • (2014). Wolfram Research Inc, Mathematica version 10. Wolfram Research Inc. Champaign.
    • Yan, J.. (2007). 'Enjoy the joy of copulas: withh a package copula'. Journal of Statistical Software. 21. 1-21
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno