Ir al contenido

Documat


A Two Parameter Discrete Lindley Distribution

  • TASSADDAQ HUSSAIN [2] ; MUHAMMAD ASLAM [1] ; MUNIR AHMAD [3]
    1. [1] King Abdulaziz University

      King Abdulaziz University

      Arabia Saudí

    2. [2] Government Postgraduate College Department of Statistics
    3. [3] National College of Business Administration and Economics
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 39, Nº. 1, 2016, págs. 45-61
  • Idioma: inglés
  • DOI: 10.15446/rce.v39n1.55138
  • Títulos paralelos:
    • Distribución Lindley de dos parámetros
  • Enlaces
  • Resumen
    • español

      En este artículo propusimos y discutimos la distribución Lindley de dos parámetros. La obtención de este Nuevo modelo está basada en una metodología en dos etapas: mezclar y luego discretizar, y puede ser vista como una generalización de una distribución geométrica. El modelo propuesto demostró tener la menor pérdida de información al ser aplicado a un cierto número de bases de datos (con estructuras de supra y sobredispersión). Los modelos estándar con los que se puede comparar son las distribuciones Poisson, Binomial Negativa, Poisson Generalizado y Gamma discrete.Su clasificación de tiempo de vida, kurtosis, sesgamiento, momentos factorials ascendientes y descendientes, al igual que sus relaciones de recurrencia, momentos negativos, estimación de parámetros via máxima verosimilitud, caracterización y discretización del caso bivariado son presentados.

    • English

      In this article we have proposed and discussed a two parameter discrete Lindley distribution. The derivation of this new model is based on a two step methodology i.e. mixing then discretizing, and can be viewed as a new generalization of geometric distribution. The proposed model has proved itself as the least loss of information model when applied to a number of data sets (in an over and under dispersed structure). The competing models such as Poisson, Negative binomial, Generalized Poisson and discrete gamma distributions are the well known standard discrete distributions. Its Lifetime classification, kurtosis, skewness, ascending and descending factorial moments as well as its recurrence relations, negative moments, parameters estimation via maximum likelihood method, characterization and discretized bi-variate case are presented.

  • Referencias bibliográficas
    • Abouammoh, A.,Mashhour, A.. (1981). 'A note on the unimodality of discrete distributions'. Communication in Statistics Theory and...
    • Al-Huniti, A.,Al-Dayian, G.. (2012). 'Discrete burr type-iii distribution'. American Journal of Mathematics and Statistic. 2. 145-152
    • Chakraborty, S.,Chakravarty, D.. (2012). 'Discrete gamma distributions: properties and parameters estimations'. Communication in Statistics...
    • D\breveeniz, E.,Ojeda, E.. (2011). 'The discrete lindley distribution: properties and application'. Journal of Statistical Computation...
    • Hussain, T.,Ahmad, M.. (2012). 'Official Statistics and its Impact on Good Governance and Economy of Pakistan'. 9th International...
    • Hussain, T.,Ahmad, M.. (2014). 'Discrete inverse rayleigh distribution'. Pakistan Journal of Statistics. 3. 203-222
    • Inusah, S.,Kozubowski, J.. (2006). 'A discrete analogue of the laplace distribution'. Journal of Statistical Planning and Inference....
    • Jazi, M.,Lai, C.,Alamatsaz, M.. (2010). 'A discrete inverse weibull distribution and estimation of its parameters'. Statistical Methodology....
    • Johnson, N.,Kotz, S.,Kemp, A.. (1992). Univariate Discrete Distributions. 2. John Wiley and Sons.
    • Kemp, A.. (1997). 'Statistical methodology'. Journal of Statistical Planning and Inference. 63. 223-229
    • Kemp, A.. (2004). 'Classes of discrete lifetime distributions'. Communications in Statistics Theory and Methods. 33. 3069-3093
    • Kemp, A.. (2006). 'The discrete half-normal distribution'. Advances in mathematical and statistical modeling. 9. 353-360
    • Kielson, J.,Gerber, H.. (1971). 'Some results for discrete unimodality'. Journal of American Statistical Association. 66. 386-389
    • Kozubowski, J.,Inusah, S.. (2006). 'A skew laplace distribution on integers'. AISM. 58. 555-571
    • Krishna, H.,Pundir, P.. (2007). 'Discrete maxwell distribution'.
    • Krishna, H.,Pundir, P.. (2009). 'Discrete burr and discrete pareto distributions'. Statistical Methodology. 6. 177-188
    • Nakagawa, T.,Osaki, S.. (1975). 'The discrete weibull distribution'. IEEE Transactions on Reliability. 24. 300-301
    • Nekoukhou, V.,Alamatsaz, M.,Bidram, H.. (2012). 'A discrete analog of the generalized exponential distribution'. Communication in...
    • Rainville, E.. (1965). Special Functions. The Macmillan Company.
    • Roy, D.. (2003). 'Discrete normal distribution'. Communication in Statistics Theory and Methods. 32. 1871-1883
    • Roy, D.. (2004). 'Discrete rayleigh distribution'. IEEE Transactions on Reliability. 52. 255-260
    • Szablowski, P.. (2001). 'Discrete normal distribution and its relationship with jacobi theta functions'. Statistics and Probability...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno