Ir al contenido

Documat


Conditional Duration Model and the Unobserved Market Heterogeneity of Traders: An Infinite Mixture of Non-Exponentials

  • EMILIO GÓMEZ-DÉNIZ [1] ; JORGE V. PÉREZ-RODRÍGUEZ [1] Árbol académico
    1. [1] Universidad de Las Palmas de Gran Canaria

      Universidad de Las Palmas de Gran Canaria

      Gran Canaria, España

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 39, Nº. 2, 2016, págs. 307-325
  • Idioma: inglés
  • DOI: 10.15446/rce.v39n2.51584
  • Títulos paralelos:
    • Modelo de duración condicionada y heterogeneidad inobservada de los agentes. Una mezcla infinita de distribuciones no exponenciales
  • Enlaces
  • Resumen
    • español

      Este trabajo extiende el modelo de duración condicionada propuesto por Luca & Zuccolotto (2003) introduciendo una mezcla infinita de distribuciones no exponenciales que permite incorporar la heterogeneidad inobservada en el mercado por los agentes. El modelo propuesto tiene en cuenta el hecho de que el tiempo de respuesta sigue una distribución gamma y que el parámetro que mide la intensidad sigue una distribución recíproca inversa Gaussiana. Esta modelización permite no sólo capturar distintas formas de la distribución de la duración sino que también captura funciones de azar no monótonas. El modelo propuesto es fácil de ajustar a datos de duración proporcionando resultados razonables y competitivos con otros modelos utilizados en la literatura.

    • English

      This paper extends the conditional duration model proposed by Luca & Zuccolotto (2003) proposing an infinite mixture of distributions based on non-exponentials that account for the unobserved market heterogeneity of traders. The model we propose takes into account the fact that reaction times follow a gamma distribution and that the intensity parameter follows the reciprocal of an inverse Gaussian distribution. This extension allows us to capture, not only various density shapes of durations, but also non-monotonic shapes of hazard functions. The model also allows us to test the unobserved heterogeneity of traders. This mixture model is easy to fit and characterises the behaviour of the conditional durations reasonably well.

  • Referencias bibliográficas
    • Abraham, B.,Balakrishnan, N.. (1998). 'Inverse gaussian autoregressive models'. Working Paper.
    • Balakrishnan, N.,Nevzorov, V.. (2003). A Primer on Statistical Distributions. John Wiley and Sons, New York..
    • Bauwens, L.,Giot, P.. (2000). 'The logarithmic acd model: an application to the bid-ask quote process of three nyse stocks'. Annales...
    • Bauwens, L.,Giot, P.,Gramming, J.,Veredas, D.. (2004). 'Comparison of financial duration models via density forecasts'. International...
    • Bauwens, L.,Veredas, D.. (2004). 'The stochastic conditional duration model: a latent factor model for the analysis of financial durations'....
    • Bhattacharya, S.,Kumar, S.. (1986). 'E-ig model in life testing'. Calcutta Statistical Association Bulletin. 35. 85-90
    • Bhatti, C. R.. (2010). 'The birnbaum-saunders autoregressive conditional duration model'. Mathematics and Computers in Simulation....
    • Castillo, E.,Hadi, A.,Balakrishnan, N.,Sarabia, J.. (2005). Extreme Value and Related Models with Applications in Engineering and Science....
    • Chhikara, R.,Folks, T.. (1989). The inverse Gaussian Distribution. Marcel Dekker, New York..
    • Clark, P.. (1973). 'A subordinated stochastic process model with finite variance for speculative prices'. Econometrica. 41. 135-156
    • Drost, F. C.,Werker, B. J. M.. (2004). 'Semiparametric duration models'. Journal of Business and Economic Statistics. 22. 40-50
    • Engle, R.,Russell, J.. (1998). 'Autoregressive conditional duration: a new model for irregularly-spaced transaction data'. Econometrica....
    • Fernandes, M.,Grammig, J.. (2006). 'A family of autoregressive conditional duration models'. Journal of Econometrics. 130. 1-23
    • Frangos, N.,Karlis, D.. (2004). 'Modelling losses using an exponential-inverse gaussian distribution'. Insurance: Mathematics and...
    • Furman, E.,Zitikis, R.. (2008). 'Weighted risk capital allocations'. Insurance: Mathematics and Economics. 43. 263-269
    • Ghysels, E.. (2000). 'Some econometric recipes for high-frequency data cooking'. Journal of Business & Economic Statistics. 18....
    • Ghysels, E.,Gourieroux, C.,Jasiak, J.. (2004). 'Stochastic volatility duration'. Journal of Econometrics. 119. 413-433
    • Gomez-Deniz, E.,Calderin, E.,Sarabia, J.. (2013). 'Gamma-generalized inverse gaussian class of distributions with applications'. Communications...
    • Grammig, J.,Maurer, K.. (2000). 'Non-monotonic hazard functions and the autoregressive conditional duration model'. Econometrics Journal....
    • Hanagal, D.,Dabade, A.. (2013). 'Modeling inverse Gaussian frailty model for bivariate survival data'. Communication in Statistics-Theory...
    • Hougard, P.. (1984). 'Life table methods for heterogeneous populations: distributions describing the heterogeneity'. Biometrika. 71....
    • Jorgensen, B.. (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. Springer-Verlag....
    • Jorgensen, B.,Seshadri, V.,Whitmore, G.. (1991). 'On the mixture of the inverse gaussian distribution with its complementary reciprocal'....
    • Lancaster, T.. (1990). The Econometric Analysis of Transition Data. Cambridge University Press.
    • Lancaster, T.. (2003). 'A stochastic model for the duration of a strike'. Journal of the Royal Statistical Society, Series A. 135....
    • Luca, G. D.,Gallo, G.. (2004). 'Mixture processes for intradaily financial durations'. Studies in Nonlinear Dynamics and Econometrics....
    • Luca, G. D.,Gallo, G.. (2009). 'Time-varying mixing weights in mixture autoregressive conditional duration models'. Econometric Reviews....
    • Luca, G. D.,Zuccolotto, P.. (2003). 'Finite and infinite mixtures for financial durations'. Metron. 61. 431-455
    • Lunde, A.. (1999). 'A generalized Gamma autoregressive conditional duration model'. Discussion Paper.
    • Mohtashami, G. R.,Mohtashami, H. A.. (2011). 'Log-concavity property for some well-known distributions'. Surveys in Mathematics and...
    • O'Hara, M.. (1995). Market Microstruture Theory. Basil Blackwell Inc..
    • Seshadri, V.. (1993). The Inverse Gaussian Distribution: A Case Study in Exponential Families. Oxford Science Publications.
    • Tsay, R.. (2002). Analysis of financial time series. John Wiley & Sons.
    • Zhang, M.,Russell, J.,Tsay, R.. (1983). 'The inverse gaussian distribution: some properties and characterizations'. The Canadian Journal...
    • Zhang, M.,Russell, J.,Tsay, R.. (2001). 'A nonlinear autoregressive conditional duration model with applications to financial transaction...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno