Ir al contenido

Documat


A Study of Cumulative Quantity Control Chart for a Mixture of RayleighModel under a Bayesian Framework

  • TABASSUM NAZ SINDHU [1] ; MUHAMMAD RIAZ [3] ; MUHAMMAD ASLAM [2] ; ZAHEER AHMED [4]
    1. [1] Quaid-i-Azam University

      Quaid-i-Azam University

      Pakistán

    2. [2] Riphah International University

      Riphah International University

      Pakistán

    3. [3] King Fahad University of Petroleum and Minerals Department of Mathematics and Statistics
    4. [4] Institute of Space Technology Department of Applied Mathematics and Statistics
  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 39, Nº. 2, 2016, págs. 185-205
  • Idioma: inglés
  • DOI: 10.15446/rce.v39n2.58915
  • Títulos paralelos:
    • Un estudio de cartas de control de cantidades acumuladas por mixturas de modelos Rayleigh bajo un enfoque Bayesiano
  • Enlaces
  • Resumen
    • español

      Este estudio trata con cartas de control acumuladas basadas en distribuciones Rayleigh y en mixturas de estas mismas. Las cartas se denominan SRCQC y MRCQC, respectivamente. Estas se fundamentan en cartas existentes como la carta de control de cantidades acumuladas (CQC), basada en modelos exponencial y Weibull en la carta de control de conteos acumulados (CCC), soportada en un modelo geométrico. Otra propuesta del estudio es la carta de control de mixtura de conteos acumulados (MCCC). Esta última es muy atractiva en procesos de monitoreo. La estructura de diseño de las cartas propuestas se deriva usando la función de distribución acumulada simple y la mixtura de dos distribuciones acumuladas. Se observa que las cartas propuestas son eficientes para detectar cambios en los parámetros del proceso. La aplicación del esquema propuesto es ilustrada usando un conjunto de datos reales.

    • English

      This study deals with the cumulative charting technique based on a simple and a mixture of Rayleigh models. The respective charting schemes are referred as the SRCQC-chart and the MRCQC-chart. These are stimulated from existing statistical control charts in this direction i.e. the cumulative quantity control (CQC) chart, based on exponential and Weibull models, and the cumulative count control (CCC) chart, based on the simple geometric model. Another motivation for this study is the mixture cumulative count control (MCCC) chart based on the two component geometric model. The use of mixture cumulative quantity is an attractive approach for process monitoring. The design structure of the proposed control chart is derived by using the cumulative distribution function of simple, and two components of mixture distribution(s). We observed that the proposed charting structure is efficient in detecting the changes in process parameters. The application of the proposed scheme is illustrated using a real dataset.

  • Referencias bibliográficas
    • Aslam, M.. (2003). 'An application of prior predictive distribution to elicit the prior density'. Journal of Statistical Theory and...
    • Banjevic, D.,Jardine, A. K. S.,Makis, V.,Ennis, M.. (2001). 'A control-limit policy and software for condition-based maintenance'....
    • Calvin, T.. (1983). 'Quality control techniques for zero defects'. IEEE Transactions on Components Hybrids and Manufacturing Technology....
    • Chan, L. Y.,Lin, D. K. J.,Xie, M.,Goh, T. N.. (2002). 'Cumulative probability control charts for geometric and exponential process characteristics'....
    • Chan, L. Y.,Xie, M.,Goh, T. N.. (2000). 'Cumulative quantity control charts for monitoring production processes'. International Journal...
    • Degroot, M. H.. (1970). Optimal statistical decision. McGraw-Hill Inc..
    • Grimshaw, S. D.,Collings, B. J.,Larsen, W. A.,Hurt, C. R.. (2001). 'Eliciting factor importance in a designed experiment'. Technometrics....
    • Jenkinson, D. J.. (2005). The elicitation of probabilities a review of the statistical literature. University of Sheffield.
    • Leon, J. C.,Vazquez-Polo, J. F.,Gonzalez, L.. (2003). 'Environmental and resource economics'. Kluwer Academic Publishers. 26. 199-210
    • Majeed, M. Y.,Aslam, M.,Riaz, M.. (2012). 'Mixture cumulative count control chart for mixture geometric process characteristics'....
    • Mendenhall, W.,Hadar, R. J.. (1958). 'Estimation of parameters of mixed exponentially distributed failure time distribution from censored...
    • Montgomery, D. C.. (2009). Introduction to Statistical Quality Control. 6. John Wiley & Sons.
    • Norstrom, J. G.. (1996). 'The use of precautionary loss functions in risk analysis'. IEEE Transactions on Reliability. 45. 400-403
    • O'Hagan, A.,Buck, C. E.,Daneshkhah, A.,Eiser, J. E.,Garthwaite, P. H.,Jenkinson, D. J.,Oakley, J. E.,Rakow, T.. (2006). Uncertain Judgements:...
    • Quesenberry, C. P.. (2007). SPC Methods for Quality Improvement. John Wiley & Sons.
    • Sun, F. B.,Yang, J.,del Rosario, R.,Murphy, R.. (2001). A conditional-reliability control-chart for the post-production extended reliability-test....
    • Xie, M.,Goh, T. N.. (1992). 'Some procedures for decision making in controlling high yield processes'. Quality and Reliability Engineering...
    • Xie, M.,Goh, T. N.,Kuralmani, V.. (2000). 'On optimal setting of control limits for geometric chart'. International Journal of Reliability...
    • Xie, M.,Goh, T. N.,Ranjan, P.. (2002). 'Some effective control chart procedures for reliability monitoring'. Reliability Engineering...
    • Xie, M.,Goh, T. N.,Tang, X. Y.. (2000). 'Data transformation for geometrically distributed quality characteristics'. Quality and Reliability...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno