Ir al contenido

Documat


Combining some Biased Estimation Methods with Least Trimmed Squares Regression and its Application

  • BETÜL KAN-KILINÇ [1] ; OZLEM ALPU [2]
    1. [1] Anadolu University

      Anadolu University

      Turquía

    2. [2] Eskişehir Osmangazi University

      Eskişehir Osmangazi University

      Turquía

  • Localización: Revista Colombiana de Estadística, ISSN-e 2389-8976, ISSN 0120-1751, Vol. 38, Nº. 2, 2015, págs. 386-386
  • Idioma: inglés
  • DOI: 10.15446/rce.v38n2.51675
  • Títulos paralelos:
    • Combinación de algunos métodos de estimación sesgados conregresión de mínimos cuadrados recortados y su aplicación
  • Enlaces
  • Resumen
    • español

      En el caso de multicolinealidad y outliers en análisis de regresión, los investigadores se enfrentan a tener que tratar dos problemas de manera simultánea. Métodos sesgados basados en estimadores robustos son útiles para estimar los coeficientes de regresión en estos casos. En este estudio se examinan algunos estimadores sesgados robustos en conjuntos de datos con outliers en x y outliers tanto en x como en y por medio del paquete ltsbase de R. En lugar de un análisis de datos completos, los estimadores sesgados robustos son evaluados usando las capacidades y características de este paquete.

    • English

      In the case of multicollinearity and outliers in regression analysis, the researchers are encouraged to deal with two problems simultaneously. Biased methods based on robust estimators are useful for estimating the regression coefficients for such cases. In this study we examine some robust biased estimators on the datasets with outliers in x direction and outliers in both x and y direction from literature by means of the R package ltsbase . Instead of a complete data analysis, robust biased estimators are evaluated using capabilities and features of this package.

  • Referencias bibliográficas
    • Agullo, J.. (2001). 'New algorithms for computing the least trimmed squares regression estimator'. Computational Statistics and Data...
    • (2013). Alfons, A.. sparseLTSEigen: RcppEigen back end for sparse least trimmed squares regression.
    • Atkinson, A.,Weisberg, S.. (1991). 'Directions in Robust Statistics and Diagnostics'. Springer-Verlag.
    • Belsley, D.. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression. 1. John Wiley & Sons.
    • Chatterjee, S.,Hadi, A. S.. (2006). Regression Analysis by Examples. 4. John Wiley & Sons.
    • Cizek, P.. (2005). 'Least trimmed squares in nonlinear regression under dependence'. Journal of Statistical Planning and Inference....
    • Fox, J.,Weisberg, S.. (2011). An R Companion to Applied Regression. 2. Sage. Thousand Oaks.
    • Gujarati, D.. (2004). Basic Econometrics. 4. McGraw-Hill.
    • Hawkins, D.. (1994). 'The feasible solution algorithm for least trimmed squares regression'. Computational Statistics and Data Analysis....
    • Hawkins, D.,Bradu, M.,Kass, G.. (1984). 'Location of several outliers in multiple regression data using elemental sets'. Technometrics....
    • Hawkins, D.,Olive, D.. (2002). 'Inconsistency of resampling algorithms for high-breakdown regression estimators and a new algorithm'....
    • Heumann, C.,Shalabh,Rao, C.,Toutenburg, H.. (2008). Linear Models and Generalizations- Least Squares and Alternatives. 3. Springer.
    • Hoerl, K.,Kennard, R.. (1970). 'Ridge regression: Biased estimation for nonorthogonal problems'. Technometrics. 12. 55-67
    • Hossjer, O.. (1995). 'Exact computation of the least trimmed squares estimate in simple linear regression'. Computational Statistics...
    • Jung, K.. (2005). 'Multivariate least-trimmed squares regression estimator'. Computational Statistics and Data Analysis. 48. 307-316
    • (2013). Kan Kilinc B., & Alpu O.,. ltsbase: Ridge and Liu Estimates based on LTS Method.
    • Kan, B.,Alpu, O.,Yazici, B.. (2013). 'Robust ridge and robust Liu estimator for regression based on the LTS estimator'. Journal of...
    • Li, L.. (2005). 'An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints'. Computational...
    • Liu, K.. (1993). 'A new class of biased estimate in linear regression'. Communications in Statistics-Theory and Methods. 22. 393-402
    • Maguna, F. P.,Nunez, M. B.,Okulik, N.,Castro, E. A.. (2003). 'Improved QSAR analysis of the toxicity of aliphatic carboxylic acids'....
    • Marquardt, D.,Snee, R.. (1975). 'Ridge regression in practice'. The American Statistician. 29. 3-20
    • Mason, R.,Gunst, R.. (1985). 'Outlier-induced collinearities'. Technometrics. 27. 401-407
    • Neykov, N.,Neytchev, P.. (1991). 'Least median of squares, least trimmed squares and S estimations by means of BMDP3R and BMDPAR'....
    • (2013). R Development Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna.
    • Rousseeuw, P. J.,van Driessen, K.. (1999). 'A fast algorithm for the minimum covariance determinant estimator'. Technometrics. 41....
    • (2012). Rousseeuw, P., C. Croux,, C. Todorov,, A. Ruckstuhl,, M. Salibian-Barrera,, T. Verbeker,, M. Koller, & Maechler, M.. robustbase:...
    • Rousseeuw, P.,Leroy, A.. (1987). Robust Regression and Outlier Detection. John Wiley & Sons.
    • Rousseeuw, P.,van Driessen, K.. (2006). 'Computing LTS regression for large data sets'. Data Mining and Knowledge Discovery. 12. 29-45
    • Ruppert, D.. (1992). 'Computing S estimators for regression and multivariate location/dispersion'. Journal of Computational and Graphical...
    • Ruppert, D.,Carrol, R.. (1980). 'Trimmed least squares estimation in the linear model'. Journal of the American Statistical Association....
    • Stromberg, A.. (1993). 'Computing the exact least median of squares estimate and stability diagnostics in multiple linear regression'....
    • Tichavsky, P.. (1991). 'Algorithms for and geometrical characterization of solutions in the LMS and the LTS linear regression'. Computational...
    • Venables, W.,Ripley, B.. (2002). Modern Applied Statistics with S. 4. Springer.
    • Willems, G.,van Aelst, S.. (2005). 'Fast and robust bootstrap for LTS'. Computational Statistics and Data Analysis. 48. 703-715
    • Wissmann, M.,Toutenburg, H.,Shalabh. (2007). Role of Categorical Variables in Multicollinearity in Linear Regression Model. Technical Report...
Los metadatos del artículo han sido obtenidos de SciELO Colombia

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno