Ir al contenido

Documat


Relaxation Oscillation, Homoclinic Orbit and Limit Cycles in a Piecewise Smooth Predator–Prey Model

  • Jinhui Yao [1] ; Jicai Huang [1] ; Hao Wang [2]
    1. [1] Central China Normal University

      Central China Normal University

      China

    2. [2] University of Alberta

      University of Alberta

      Canadá

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01154-1
  • Enlaces
  • Resumen
    • In this paper, we revisit a piecewise smooth fast-slow predator–prey model with Holling type I functional response and predator harvesting, where the harvesting rate is sufficiently small compared to the intrinsic growth rate of prey. The model undergoes two bifurcation mechanisms: (i) singular slow-fast cycle bifurcation, through which the model can have a unique and stable relaxation oscillation or homoclinic orbit; (ii) boundary equilibrium bifurcation, from which a unique and unstable limit cycle occurs. Additionally, we show the coexistence of a large-amplitude relaxation oscillation (or homoclinic orbit) and a small-amplitude limit cycle.

  • Referencias bibliográficas
    • 1. Brauer, F., Soudack, A.C.: Stability regions and transition phenomena for harvested predator-prey systems. J. Math. Biol. 7, 319–337 (1979)
    • 2. Brauer, F., Soudack, A.C.: Stability regions in predator-prey systems with constant-rate prey harvesting. J. Math. Biol. 8, 55–71 (1979)
    • 3. Brauer, F., Soudack, A.C.: Coexistence properties of some predator-prey systems under constant rate harvesting and stocking. J. Math. Biol....
    • 4. Chen, J., Huang, J., Ruan, S., Wang, J.: Bifurcation of invariant tori in predator-prey models with seasonal prey harvesting. SIAM J. Appl....
    • 5. Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)
    • 6. Dai, G., Xu, C.: Constant rate predator harvested predator-prey system with Holling-type I functional response. Acta Math. Sci. Ser. B...
    • 7. Dubois, D.M., Closset, P.L.: Pathiness in primary and secondary production in the Southern Bight: a mathematical theory. In: Persoone,...
    • 8. Fenichel, N.: Persistence and smoothness of invariant manifold for flows. Indiana Univ. Math. J. 11, 193–226 (1971)
    • 9. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 10. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)
    • 11. Freire, E., Ponce, E., Rodrigo, F., Torres, F.: Bifurcation sets of continuous piecewise linear systems with two zones. Int. J. Bifur....
    • 12. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol....
    • 13. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc....
    • 14. Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yiled prey harvesting....
    • 15. Huang, J., Gong, Y., Ruan, S.: Bifurcation analysis in a predator-prey model with constant-yield predator harvesting. Discrete Contin....
    • 16. Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov-Takens bifurcation of codimension 3 in a predatorprey model with constant-yield predator...
    • 17. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic point-fold and canard points in two dimensions....
    • 18. Kuznetsov, Y.A., Muratori, S., Rinaldi, S.: Homoclinic bifurcations in slow-fast second order systems. Nonlinear Anal. 25, 747–762 (1995)
    • 19. Li, S., Wang, X., Li, X., Wu, K.: Relaxation oscillations for Leslie-type predator-prey model with Holling type I response functional...
    • 20. Li, X., Wang, W.: Qualitative analysis of predator-prey system with Holling type I functional response. J. Southwest China Normal Univ....
    • 21. Liu, B., Zhang, Y., Chen, L.: Dynamics complexities of a Holling I predator-prey model concerning periodic biological and chemical control....
    • 22. Liu, N.: Limit cycles for a predator-prey model with functional response of Holling type I. Chin. Ann. Math. 9, 421–427 (1988). (in Chinese)
    • 23. May, R., Beddington, J.R., Clark, C.W., Holt, S.J., Laws, R.M.: Management of multispecies fisheries. Science 205, 267–277 (1979)
    • 24. Ren, Y., Han, L.: The predator-prey model with two limit cycles. Acta Math. Appl. Sin. Engl. Ser. 5, 30–32 (1989)
    • 25. Saha, T., Pal, P., Banerjee, M.: Slow-fast analysis of a modified Leslie-Gower model with Holling type I functional response. Nonlinear...
    • 26. Seo, G., Kot, M.: A comparison of two predator-prey models with Holling’s type I functional response. Math. Biosci. 212, 161–179 (2008)
    • 27. Seo, G., DeAngelis, D.L.: A predator-prey model with a Holling type I functional response including a predator mutual interference. J....
    • 28. Tang, S., Cheke, R.A., Xiao, X.: Optimal impulsive harvesting on non-autonomous Beverton-Holt difference equations. Nonlinear Anal. 65(12),...
    • 29. Tang, S., Chen, L.: The effect of seasonal harvesting on stage-structured population models. J. Math. Biol. 48(4), 357–74 (2004)
    • 30. Xiang, C., Lu, M., Huang, J.: Degenerate Bogdanov-TaKens bifurcation of codimension 4 in HollingTanner model with harvesting. J. Differ....
    • 31. Xiao, D., Ruan, S.: Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Inst. Commun. 21, 493–506...
    • 32. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting. SIAM J. Appl. Math. 65,...
    • 33. Yao, J., Huzak, R.: Cyclicity of the limit periodic sets for a singularly perturbed Leslie-Gower predatorprey model with prey harvesting....
    • 34. Zegeling, A., Kooij, E.: Singular perturbations of the Holling I predator-prey system with a focus. J. Differ. Equ. 269, 5434–5462 (2020)
    • 35. Zhang, Y., Xu, Z., Liu, B.: Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control. J....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno