Ir al contenido

Documat


H-partial uniform spaces and their application in the compression of digital images

  • Shukla, Satya Narayan [1] ; Tiwari, Surabhi [1]
    1. [1] Motilal Nehru National Institute of Technology

      Motilal Nehru National Institute of Technology

      India

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 441-456
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.20973
  • Enlaces
  • Resumen
    • Fixed point theorem is very important tool in different branches of mathematics. In this paper, we introduce partial uniform spaces as a generalization of uniform spaces and metric spaces; and study some basic properties. Various examples support the theory. We prove fixed point theorems for H-partial uniform spaces, by using a mapping called E-distance function. Finally, we give the applications of these fixed point theorems to compress digital images.

  • Referencias bibliográficas
    • M. Aamri, S. Bennani and D. El Moutawakil, Fixed point and variational principle in uniform spaces, Sibirskie Elect. Math. 3 (2006), 137-142.
    • M. Aamri and D. El Moutawakil, Common fixed point theorem for E-contractive or E-expansive maps in uniform spaces, Acta Math. Acad. Paedagog....
    • M. Aamri and D. El Moutawakil, Weak compatibility and common fixed point theorem for A-contractive or E-expansive maps in uniform spaces,...
    • R. P. Agarwal, D. O'Regan and N. S. Papageorgiou, Common fixed point theory for multi-valued contrative maps of Reich type in uniform...
    • I. Altun and M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat 23, no. 3 (2009), 15-22. https://doi.org/10.2298/FIL0903015A
    • N. Bourbaki, General Topology, Springer 1989. https://doi.org/10.1007/978-3-642-61703-4
    • E. Čech, Z. Frolik and M. Katĕtov, Topological Spaces, Prague: Academia, Publishing House of the Czechoslovak Academy of Science, 1996.
    • A. S. Davis, Indexed systems of neighborhoods for general topological spaces, The American Mathematical Monthly 68, no. 9 (1961), 886-894....
    • O. Ege and I. Karaca, Digital homotopy fixed point theory, Comp. Ren. Math. 353, no. 11 (2015), 1029-1033. https://doi.org/10.1016/j.crma.2015.07.006
    • O. Ege and I. Karaca, Banach fixed point theorem for digital images, J. Nonlin. Sci. Appl. 8, no. 3 (2015), 237-245. https://doi.org/10.22436/jnsa.008.03.08
    • O. Ege and I. Karaca, Lefschetz fixed point theorem for digital images, Fixed Point Theo. Appl. (2013), 1-13. https://doi.org/10.1186/1687-1812-2013-253
    • Y. Feng and S. Liu, Fixed point theorems for multi-valued increasing operators in partially ordered spaces, Soochow Math. J. 30, no. 4 (2004),...
    • I. M. James, Topological and uniform spaces, Springer Science and Business Med. 2012.
    • M. Khare and S. Tiwari, Completion in a common supercategory of Met, UAP, wsAP and Near, Demonstratio Math. 46, no. 1 (2013), 209-227. https://doi.org/10.1515/dema-2013-0435
    • J. F. Peters and P. Wasilewski, Foundation of near sets, Information Sci. 179, no. 18 (2009), 3091-3109. https://doi.org/10.1016/j.ins.2009.04.018
    • J. F. Peters, A. Skowron and J. Stepaniuk, Nearness of objects: Extension of approximation space model, Fundamenta Inf. 79, no. 3-4 (2007),...
    • J. F. Peters, Topology of Digital Images: Visual Pattern Discovery in Proximity Spaces, Springer Science and Business Med. 2014. https://doi.org/10.1007/978-3-642-53845-2
    • P. K. Singh and S. Tiwari, A fixed point theorem in rough semi-linear uniform spaces, Theoretical Comput. Sci. 851 (2021), 111-120. https://doi.org/10.1016/j.tcs.2020.11.011
    • P. K. Singh and S. Tiwari, Rough semi-uniform spaces and its image proximities, Electronic Res. Arch. 28(2) (2020), 1095-1106. https://doi.org/10.3934/era.2020060
    • S. N. Shukla and S. Tiwari, Ultra-pseudo metric spaces and their characterization with completely regular topological spaces, Topol. Appl....
    • D. Türkoğlu, Fixed point theorem for hybrid contractions in uniform space, Taiwanese J. Math. 12, no. 3 (2008), 807-820. https://doi.org/10.11650/twjm/1500602437
    • D. Türkoğlu and B. E. Rhoades, A general fixed point theorem for multi-valued mapping in uniform space, The Rocky Mountain J. Math. 38, no....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno