Ir al contenido

Documat


On star Rothberger spaces modulo an ideal

  • Sarkar, Susmita [1] ; Bal, Prasenjit [1] ; Datta, Mithun [1]
    1. [1] ICFAI University, Tripura
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 407-414
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.20464
  • Enlaces
  • Resumen
    • In this article, we introduce the ideal star-Rothberger property by coupling the notion of a star operator to that of an ideal Rothberger space, after which some of its topological characteristics are analysed. By creating relationships between a numbers of topological features with structures similar to the ideal star-Rothberger space, we reinforce the concept. In order to illustrate the differences between a number of related topological properties, we also provide several counter examples. Certain preservation-related properties under subspaces and functions are investigated. Lastly we find a way to express ideal star-Rothberger space by means of families of closed sets by bringing some modifications to the SSI^I property. 

  • Referencias bibliográficas
    • P. Bal and R. De, On strongly star semi-compactness of topological spaces, Khayyam J. of Math. 9, no. 1 (2023), 54-60. https://doi.org/10.1109/MSPEC.2023.10120691
    • P. Bal, On the class of I-γ-open cover and I-St-γ-open cover, Hacet. J. Math. Stat. 53, no. 3 (2023), 630-639.
    • P. Bal and S. Sarkar, On strongly star g-compactness of Topological spaces, Tatra Mt. Math. Publ. 85 (2023), 89-100. https://doi.org/10.2478/tmmp-2023-0026
    • P. Bal, D. Rakshit, A variation of the class of statistical-γ-covers, Topol. Algebra Appl. 11, no. 1 (2023), 20230101. https://doi.org/10.1515/taa-2023-0101
    • P. Bal and S. Bhowmik, A counter example in topology of star-spaces, Bull. Kerala Math. Assoc. 12, no. 1 (2015), 11-13.
    • P. Bal and S. Bhowmik, Some new star-selection principles in topology, Filomat 31, no. 13 (2017), 4041-4050. https://doi.org/10.2298/FIL1713041B
    • P. Bal, A countable intersection like characterization of star-Lindelöf spaces, Res. Math. 31, no. 2 (2023), 3-7. https://doi.org/10.15421/242308
    • P. Bal, S. Bhowmik and D. Gauld, On selectively star-Lindelöf properties, J. Indian Math. Soc. 85, no. 3-4 (2018), 291-304. https://doi.org/10.18311/jims/2018/20145
    • P. Bal, Some independent results on ideal Rothberger spaces, preprint.
    • P. Bal and L. D. R. Kočinac, On selectively star-ccc spaces, Topology Appl. 281 (2020), 107184. https://doi.org/10.1016/j.topol.2020.107184
    • M. Bhardwaj, Addendum to "Ideal Rothberger spaces" [Hacet. J. Math. Stat. 47(1), 69-75, 2018], Hacet. J. Math. Stat. 47, no. 1 (2018),...
    • E. K. van Douwen, G. M. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl. 39, no. 1 (1991), 71-103. https://doi.org/10.1016/0166-8641(91)90077-Y
    • R. Engelking, General Topology, Sigma Series in Pure Mathematics (1989), Revised and complete ed. Berlin: Heldermann.
    • A. Güldürdek, Ideal Rothberger spaces, Hacet. J. Math. Stat. 47, no. 1 (2018), 66-75.
    • A. Güldürdek, More on ideal Rothberger spaces, Eur. J. Pure Appl. Math. 16, no. 1 (2023), 1-4. https://doi.org/10.29020/nybg.ejpam.v16i1.4625
    • Lj. D. R. Kočinak, Star-Menger and related spaces, Publ. Math. Debrecen 55 (1999), 421-431. https://doi.org/10.5486/PMD.1999.2097
    • Lj. D. R. Kočinak, Star-Menger and related spaces II, Filomat 13 (1999), 129-140.
    • K. Kuratowski Topologie I, Warszawa, (1933).
    • R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Thesis, Uni. Of Cal. At Santa Barbara (1967).
    • F. Rothberger, Eine verscharfung der Eigenschaft, Fundam. Math. 30, no. 1 (1938), 50-55. https://doi.org/10.4064/fm-30-1-50-55
    • M. Sakai, Star covering versions of the Rothberger property, Topology Appl. 176 (2014), 22-34. https://doi.org/10.1016/j.topol.2014.07.006
    • S. Sarkar, P. Bal and D. Rakshit, On topological covering properties by means of generalized open sets, Topological Algebra and its Applications...
    • R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Complex (1946).

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno