Ir al contenido

Documat


k-spaces of non-domain-valued geometric points

  • Goswami, Amartya [1]
    1. [1] University of Johannesburg

      University of Johannesburg

      City of Johannesburg, Sudáfrica

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 375-383
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.19887
  • Enlaces
  • Resumen
    • The aim of this paper is to study the topological properties of algebraic sets with zero divisors. We impose a subbasic topology on the set of proper ideals of a k-algebra and this new “k-space” becomes a generalization of the corresponding Zariski space. We prove that a k-space is T0, quasi-compact, spectral, and connected. Moreover, we study continuous maps between such k-spaces. We conclude with a question about the construction of a sheaf of k-spaces similar to affine schemes.

  • Referencias bibliográficas
    • T. Dube and A. Goswami, Ideal spaces: an extension of structure spaces of a ring, J. Algebra Appl. 22, no. 11 (2023), Paper No. 2350245, 18...
    • A. Grothendieck, Éléments de géométrie algébrique I, Springer-Verlag, Berlin, 1971.
    • D. Harris, Universal quasi-compact $T_{1}$ spaces, General Topology and Appl. 3 (1973), 291-318. https://doi.org/10.1016/0016-660X(73)90018-4
    • M. Hochster, Prime ideal structure in commutative rings, Trans. Am. Math. Soc. 142 (1969), 43-60. https://doi.org/10.1090/S0002-9947-1969-0251026-X
    • H. A. Priestley, Intrinsic spectral topologies, in: Papers on general topology and applications (Flushing, NY, 1992), 728, 78-95, New York...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno