Ir al contenido

Documat


Mizoguchi-Takahashi local contractions to Feng-Liu contractions

  • Maiti, Pallab [1] ; Sultana, Asrifa [1]
    1. [1] Indian Institute of Technology Bhilai
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 321-329
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.19619
  • Enlaces
  • Resumen
    • In this article, we establish that any uniformly local Mizoguchi-Takahashi contraction is actually a set-valued contraction due to Feng and Liu on a metrically convex complete metric space. Through an example, we demonstrate that this result need not hold on any arbitrary metric space. Furthermore, when the metric space is compact, we derive that any Mizoguchi-Takahashi local contraction and Nadler local contraction are equivalent. Moreover, a result related to invariant best approximation is established.

  • Referencias bibliográficas
    • M. A. Al-Thagafi and N. Shahzad, Noncommuting selfmaps and invariant approximations, Nonlinear Analysis 64 (2006), 2778-2786. https://doi.org/10.1016/j.na.2005.09.015
    • M. Berinde and V. Berinde, On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. 326 (2007), 772-782. https://doi.org/10.1016/j.jmaa.2006.03.016
    • M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7-10. https://doi.org/10.1090/S0002-9939-1961-0120625-6
    • A. A. Eldred, J. Anuradha, and P. Veeramani, On the equivalence of the Mizoguchi-Takahashi fixed point theorem to Nadler's theorem, Appl....
    • Y. Feng and S. Liu, Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl....
    • T. Kamran, Coincidence and fixed points for hybrid strict contractions, J. Math. Anal. Appl. 299 (2004), 235-241. https://doi.org/10.1016/j.jmaa.2004.06.047
    • Z. D. Mitrović, V. Parvaneh, N. Mlaiki, N. Hussain, and Stojan Radenović, On some new generalizations of Nadler contraction in b-metric spaces,...
    • N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric space, J. Math. Anal. Appl. 141 (1989), 177-188....
    • B. Mohammadi, V. Parvaneh, H. Aydi and H. Isik, Extended Mizoguchi-Takahashi type fixed point theorems and their application, Mathematics...
    • S. B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488. https://doi.org/10.2140/pjm.1969.30.475
    • V. Parvaneh, B. Mohammadi, M. De La Sen, E. Alizadeh, and H. K. Nashine, On existence of solutions for some nonlinear fractional differential...
    • H. K. Pathak and N. Hussain, Common fixed points for Banach operator pairs with applications, Nonlinear Analysis 69 (2008), 2788-2802. https://doi.org/10.1016/j.na.2007.08.051
    • B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for α-ψ contractive type mappings, Nonlinear Analysis 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014
    • W. Sintunavarat and P. Kumam, Coincidence and common fixed points for hybrid strict contractions without the weakly commuting condition, Applied...
    • A. Sultana and V. Vetrivel, Fixed points of Mizoguchi-Takahashi contraction on a metric space with a graph and applications, J. Math. Anal....
    • A. Sultana and X. Qin, On the equivalence of the Mizoguchi-Takahashi locally contractive map and the Nadler's locally contractive map,...
    • T. Suzuki, Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's, J. Math. Anal. Appl. 340 (2008), 752-755....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno