Ir al contenido

Documat


Lightly chaotic dynamical systems

  • Miranda, Annamaria [1]
    1. [1] University of Salerno

      University of Salerno

      Fisciano, Italia

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 25, Nº. 2, 2024, págs. 277-289
  • Idioma: inglés
  • DOI: 10.4995/agt.2024.15293
  • Enlaces
  • Resumen
    • In this paper we introduce some weak dynamical properties by using subbases for the phase space. Among them, the notion of  light chaos is the most significant. Several examples, which clarify the relationships between this kind of chaos and some classical notions, are given. Particular attention is also devoted to the connections between the dynamical properties of a system and the dynamical properties of the associated functional envelope. We show, among other things, that a continuous map f : X → X , where X is a metric space, is chaotic (in the sense of Devaney) if and only if the associated functional dynamical system is lightly chaotic.

  • Referencias bibliográficas
    • E. Akin, The general Topology of Dynamical Systems, Grad. Stud. Math. vol.1, Amer. Math. Soc., Providence, 1993.
    • E. Akin, J. Auslander and K. Berg, When is a transitive map is chaotic?, Convergence in ergodic theory and probability (Columbus, OH, 1993),...
    • R. Arens and J. Dugundji, Topologies for function spaces, Pacific J. Math. 1 (1951), 5-31. https://doi.org/10.2140/pjm.1951.1.5
    • W. K. Alqurashi, L. A. Khan and A. V. Osipov, Set-open topologies on function spaces, Appl. Gen. Topol. 19, no. 1 (2018), 55-64. https://doi.org/10.4995/agt.2018.7630
    • J. Auslander, S. Kolyada and L. Snoha, Functional envelope of a dynamical system, Nonlinearity 20, no. 9 (2007), 2245-2269. https://doi.org/10.1088/0951-7715/20/9/012
    • J. Banks, J. Brooks, G. Cairs, P. Stacey, On the Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334. https://doi.org/10.1080/00029890.1992.11995856
    • Z. Chen and Y. Huang, Functional envelopes relative to the point-open topology on a subset, Discrete and continuous dynamical systems 37,...
    • G. Chen, T. Huang and Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos Appl. Sci. Engrg....
    • R. L. Devaney, An Introduction to Chaotic Dynamical System, Addison Wesley 1989.
    • J. de Vries, Topological Dynamical Systems. An Introduction to the Dynamics of Continuous Mappings, Series: De Gruyter Studies in Mathematics,...
    • A. Fedeli, Topologically sensitive dynamical systems, Topology Appl. 248 (2018), 192-203. https://doi.org/10.1016/j.topol.2018.09.004
    • K. Grosse-Erdmann and A. Peris Manguillot, Linear chaos, Springer Verlag, 2011. https://doi.org/10.1007/978-1-4471-2170-1
    • H.P. A. Kunzi and S. Romaguera, Spaces of continuous functions and quasi-uniform convergence, Acta Math. Hungar. 75 (1997), 287-298. https://doi.org/10.1023/A:1006593505036
    • S. Kolyada and L. Snoha, Some aspects of topological transitivity. A survey, Iteration theory (ECIT 94) (Opava), 3-35. Grazer Math. Ber.,...
    • L. Li and Y. Huang, Growth rates of total variations of snapshots of 1D linear wave equations with nonlinear right-end boundary conditions,...
    • R. A. McCoy and I. Ntantu, Topological properties of function spaces, Lecture Notes in Math. No. 1315, Springer-Verlag, 1988. https://doi.org/10.1007/BFb0098389
    • A. Miranda, On metrizability and complete uniformizability of function spaces, Ricerche Mat. 52, no. 2 (2003), 177-195.
    • A. Miranda, Sensitivity for set-valued discrete dynamical systems, Adv. Dyn. Syst. Appl. 11, no. 2 (2016), 125-134.
    • A. V. Osipov, The C-compact-open topology on function spaces, Topology Appl. 159, no. 13 (2012), 3059-3066. https://doi.org/10.1016/j.topol.2012.05.018
    • E. Yu Romanenko, Dynamical systems induced by continuous time difference equations and long-time behavior of solutions, J. Difference Equ....
    • S. Ruette, Chaos for continuous interval maps: a survey of relationship between the various kinds of chaos, arXiv:1504.03001v1.
    • S. Willard, General Topology, Addison-Wesley, 1970.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno