Elche, España
Los robots móviles tienen la capacidad de desplazarse de manera autónoma, para ello es necesario conocer su posición. Esta estimación puede ser obtenida a partir de diversos sensores. Uno de los sensores más comúnmente utilizados son los sistemas de visión por la gran cantidad de información que son capaces de capturar. Para extraer la información más relevante de las imágenes capturadas por las cámaras, se utilizan algoritmos que realizan la detección y su posterior descripción de los puntos más característicos del entorno, también conocidos como marcas visuales. Además, estas marcas visuales deben ser detectadas y descritas de manera que sean invariantes a posibles cambios del entorno. Un caso concreto de estos cambios, son los cambios en la iluminación, común en entornos interiores y exteriores. En este trabajo se ha realizado una evaluación de varios métodos clásicos y métodos que incorporan redes de aprendizaje profundo, para observar su comportamiento ante secuencias de imágenes que presentan diferentes condiciones de iluminación.
Mobile robots have the ability to move autonomously, for this purpose it is necessary to know their position. This estimate can be obtained from various sensors. One of the most commonly used sensors are vision systems due to the large amount of information they are capable of capturing. In order to extract the most relevant information from the images captured by the cameras, algorithms are used to detect and describe the most characteristic points of the environment, also known as visual marks. Furthermore, these visual marks must be detected and described in such a way that they are invariant to possible changes in the environment. A specific case of these changes is changes in lighting, which is common in indoor and outdoor environments. Inthis research, an evaluation of several classical methods and methods incorporating deep learning networks has been carried outto observe their performance when faced with sequences of images presenting different lighting conditions.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados