Ir al contenido

Documat


Averaging Principle for McKean-Vlasov SDEs Driven by FBMs

  • Tongqi Zhang [1] ; Yong Xu [1] ; Lifang Feng [1] ; Bin Pei [1]
    1. [1] Northwestern Polytechnical University

      Northwestern Polytechnical University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 1, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper considers a class of mixed slow-fast McKean–Vlasov stochastic differential equations that contain the fractional Brownian motion with Hurst parameter H > 1/2 and the standard Brownian motion. Firstly, we prove an existence and uniqueness theorem for the mixed coupled system. Secondly, under suitable assumptions on the coefficients, using the approach of Khasminskii’s time discretization, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the mean square sense.

  • Referencias bibliográficas
    • 1. Barzykin, A., Tachiya, M.: Diffusion-influenced reaction kinetics on fractal structures. J. Chem. Phys. 99(12), 9591–9597 (1993)
    • 2. Bertram, R., Rubin, J.: Multi-timescale systems and fast-slow analysis. Math. Biosci. 287, 105–121 (2017)
    • 3. Bogoliubov, N.,Mitropolsky, Y.: AsymptoticMethods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York...
    • 4. Cheridito, P.: Mixed fractional Brownian motion. Bernoulli 6, 913–934 (2001)
    • 5. Cheridito, P., Nualart, D.: Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter H ∈...
    • 6. Desposito, M.: Superdiffusion induced by a long-correlated external random force. Phys. Rev. E 84(6), 061114 (2011)
    • 7. Ee, W., Engquist, B.: Multiscale modeling and computations. Not. Am. Math. Soc. 50(9), 1062–1070 (2003)
    • 8. Ee, W., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58(11),...
    • 9. Freidlin, M., Wentzell, A.: Random Perturbations of Dynamical Systems. Springer, New York (2012)
    • 10. Fan, X., Huang, X., Suo, Y.: Distribution dependent SDEs driven by fractional Brownian motions. Stoch. Process. Appl. 151, 23–67 (2022)
    • 11. Galeati, L., Harang, F., Mayorcas, A.: Distribution dependent SDEs driven by additive fractional Brownian motion. Probab. Theory Relat....
    • 12. Givon, D.: Strong convergence rate for two-time-scale jump-diffusion stochastic differential systems. Multiscale Model. Simul. 6(2), 577–594...
    • 13. Guerra, J., Nualart, D.: Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Stoch. Anal....
    • 14. Hasselmann, K.: Stochastic climate models part I. Theory Tellus 28(6), 473–485 (1976)
    • 15. Hong,W., Li, S., Liu,W.: Strong convergence rates in averaging principle for slow-fastMcKean–Vlasov SPDEs. J. Differ. Equ. 316, 94–135...
    • 16. Huang, X., Yang, F.: Distribution-dependent SDEs with Hölder continuous drift and α-stable noise. Numer. Algorithms 86, 813–831 (2021)
    • 17. Kac,M.: Foundations of kinetic theory. Proceedings of the Third Berkeley Symposium onMathematical Statistics and Probability, University...
    • 18. Khasminskii, R.: On the averaging principle for stochastic differential Itô equations. Kiberneticka 4(2), 260–279 (1968)
    • 19. Liu,W., Röckner,M.: Stochastic Partial Differential Equations: An Introduction. Universitext. Springer, Berlin (2015)
    • 20. Nualart, D., R˘a¸scanu, A.: Differential equations driven by fractional Brownian motion. Collect. Math. 53(1), 55–81 (2002)
    • 21. Øksendal, B.: Stochastic Differential Equations. Springer, Heidelberg (2003)
    • 22. Panella, V., Krim, J.: Adsorption isotherm study of the fractal scaling behavior of vapor-deposited silver films. Phys. Rev. E 49(5),...
    • 23. Pei, B., Inahama, Y., Xu, Y.: Averaging principle for fast-slow system driven by mixed fractional Brownian rough path. J. Differ. Equ....
    • 24. Pei, B., Inahama, Y., Xu, Y.: Pathwise unique solutions and stochastic averaging for mixed stochastic partial differential equations driven...
    • 25. Pei, B., Inahama, Y., Xu, Y.: Averaging principles for mixed fast-slow systems driven by fractional Brownian motion. Kyoto J. Math. 63(4),...
    • 26. Pipiras, V., Taqqu, M.: Long-range Dependence and Self-Similarity, p. 45. Cambridge University Press, Cambridge (2017)
    • 27. Qiao, H., Wei, W.: Efficient filtering for multiscale McKean–Vlasov Stochastic differential equations. arXiv preprint arXiv:2206.05037...
    • 28. Röckner, M., Sun, X., Xie, Y.: Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations. Ann. Inst. H. Poincaré...
    • 29. Röckner, M., Zhang, X.: Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli 27(2), 1131–1158 (2021)
    • 30. Samorodnitsky, G.: Stochastic Processes and Long Range Dependence. Springer, Berlin (2016)
    • 31. Seri-Levy, A., Avnir, D.: Kinetics of diffusion-limited adsorption on fractal surfaces. J. Chem. Phys. 97(40), 10380–10384 (1930)
    • 32. Shen, G., Xiang, J., Wu, J.-L.: Averaging principle for distribution dependent stochastic differential equations driven by fractional...
    • 33. Sönmez, E.: On mixed fractional stochastic differential equations with discontinuous drift coefficient. J. Appl. Probab. 60, 589–606 (2023)
    • 34. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
    • 35. Sun, L.: Pricing currency options in the mixed fractional Brownian motion. Physica A 392(16), 3441– 3458 (2013)
    • 36. Vlasov, A.: The vibrational properties of an electron gas. Sov. Phys. Usp. 10(6), 721–733 (1968)
    • 37. Wang, F.-Y.: Distribution dependent SDEs for Landau type equations. Stoch. Process. Appl. 128(2), 595–621 (2018)
    • 38. Xu, J., Miao, Y.: L p(p>2)-strong convergence of an averaging principle for two-timescales jumpdiffusion stochastic differential equations....
    • 39. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lévy noise. Physica D 240(17), 1395–1401 (2011)
    • 40. Xu, Y., Pei, B., Guo, R.: Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete Contin. Dyn....
    • 41. Zili, M.: On the mixed fractional Brownian motion. Int. J. Stoch. Anal. 2006, 032435 (2006)
    • 42. Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Stat....
    • 43. Mishura, Y.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer, Berlin (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno