Ir al contenido

Documat


On Zero Entropy Homeomorphisms of the Pseudo-arc

  • Jernej Cinc [1]
    1. [1] University of Maribor

      University of Maribor

      Eslovenia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we study interval maps f with zero topological entropy that are crooked;

      i.e. whose inverse limit with f as the single bonding map is the pseudo-arc. We show that there are uncountably many zero entropy pairwise non-conjugate zero entropy crooked interval maps with different sets of fixed points. We also show that there are uncountably many crooked maps that are pairwise non-conjugate and have exactly two fixed points. Furthermore, we provide a characterization of crooked interval maps that are under or above the diagonal.

  • Referencias bibliográficas
    • 1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Transactions of the American Mathematical Society 114, 309–319 (1965)
    • 2. Anuši´c, A., Cinˇ ˇ c, J.: Inhomogeneities in chainable continua, Fundamenta Mathematicae 254, (Appendix A written by Henk Bruin.)(2021)
    • 3. Barge, M., Martin, J.: Construction of global attractors. Proc. Am. Math. Soc. 110, 523–525 (1990)
    • 4. Bing, R.H.: A homogeneous indecomposable plane continuum. Duke Math. J. 15, 729–742 (1948)
    • 5. Bing, R.H.: Concerning hereditarily indecomposable continua. Pacific J. Math. 1, 43–51 (1951)
    • 6. Bobok, J., Troubetzkoy, S.: Typical properties of interval maps preserving the Lebesgue measure. Nonlinearity 33(12), 6461–6479 (2020)
    • 7. Bobok, J., Cinˇ ˇ c, J., Oprocha, P., Troubetzkoy, S.: Periodic points and shadowing for generic Lebesgue measure-preserving interval maps....
    • 8. Boro ´nski, P., Cinˇ ˇ c, J., Oprocha, P.: Beyond 0 and infinity: a solution to the Barge entropy conjecture, arXiv:2105.11133, May (2021)....
    • 9. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153, 401–414 (1971)
    • 10. Cinˇ ˇ c, J., Oprocha, P.: Parametrized family of pseudo-arc attractors: physical measures and prime end rotations. Proc. Lond. Math....
    • 11. Darji, U.B., Udayan, H.: Kato Chaos and indecomposability. Adv. Math. 304, 793–808 (2017)
    • 12. Drwie˛ga, T., Oprocha, P.: Topologically mixing maps and the pseudoarc. Ukraïn. Mat. Zh. 66(2), 176–186 (2014)
    • 13. Greenwood, S., Štimac, S.: A characterization of a map whose inverse limit is an arc. Ergodic Theory Dynam. Systems 42(8), 2533–2549 (2022)
    • 14. Henderson, G.W.: The pseudo-arc as an inverse limit with one binding map. Duke Math. J. 31, 421–425 (1964)
    • 15. Krasinkiewicz, J., Minc, P.: Mappings onto indecomposable continua Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25(7), 675–680...
    • 16. Lewis, W., Minc, P.: Drawing the pseudo-arc. Houston J. Math. 36(3), 905–934 (2010)
    • 17. Mouron, C.: Entropy of shift maps of the pseudo-arcs. Top. Appl. 159, 34–39 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno