Ir al contenido

Documat


Invariant Tori for Area-Preserving Maps with Ultra-differentiable Perturbation and Liouvillean Frequency

  • Hongyu Cheng [3] ; Fenfen Wang [1] ; Shimin Wang [2]
    1. [1] Sichuan Normal University

      Sichuan Normal University

      China

    2. [2] Shandong University

      Shandong University

      China

    3. [3] Tiangong University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01143-4
  • Enlaces
  • Resumen
    • We prove the existence of invariant tori to the area-preserving maps defined on R2 ×T x = F(x, θ ), θ = θ + α (α ∈ R\Q), where F is related to a linear rotation, and the perturbation is ultra-differentiable in θ ∈ T, which is very closed to C∞ regularity. Moreover, we assume that the frequency α is any irrational number without other arithmetic conditions and the smallness of the perturbation does not depend on α. Thus, both the difficulties from the ultra-differentiability of the perturbation and Liouvillean frequency will appear in this work. The proof of the main result is based on the Kolmogorov-Arnold-Moser (KAM) scheme about the area-preserving maps with some new techniques.

  • Referencias bibliográficas
    • 1. Avila, A., Fayad, B., Krikorian, R.: A KAM scheme for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019...
    • 2. Avila, A., Jitomirskaya, S.: The Ten Martini Problem. Ann. of Math. (2) 170(1), 303–342 (2009)
    • 3. Avila, A., Krikorian, R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. of Math. (2) 164(3), 911–940...
    • 4. Bounemoura, A., Chavaudret, C., Liang, S.: Reducibility of ultra-differentiable quasiperiodic cocycles under an adapted arithmetic condition....
    • 5. Bounemoura, A., Féjoz, J.: Hamiltonian perturbation theory for ultra-differentiable functions. Mem. Amer. Math. Soc. 270(1319), v+89...
    • 6. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. Indiana Univ. Math. J. 52(2), 283–328 (2003)
    • 7. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. II. Regularity with respect to parameters....
    • 8. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds. III. Overview and applications. J. Differ....
    • 9. Cai, A., Wang, X.: Polynomial decay of the gap length for Ck quasi-periodic Schrödinger operators and spectral application. J. Funct. Anal....
    • 10. Chavaudret, C.: Strong almost reducibility for analytic and gevrey quasi-periodic cocycles. Bulletin de la Société Mathématique de France...
    • 11. Cheng, H., Ge, L., You, J., Zhou, Q.: Global rigidity for ultra-differentiable quasiperiodic cocycles and its spectral applications. Adv....
    • 12. Cicognani, M., Colombini, F.: Modulus of continuity of the coefficients and (non)quasianalytic solutions in the strictly hyperbolic cauchy...
    • 13. Eliasson, L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146(3), 447–482 (1992)
    • 14. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps:...
    • 15. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps:...
    • 16. Hou, X., Wang, J., Zhou, Q.: Absolutely continuous spectrum of multifrequency quasiperiodic Schrödinger operator. J. Funct. Anal. 279(6),...
    • 17. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260...
    • 18. Krikorian, R., Wang, J., You, J., Zhou, Q.: Linearization of quasiperiodically forced circle flows beyond Brjuno condition. Comm. Math....
    • 19. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad.Wiss. Göttingen Math.-Phys. Kl. II 1962, 1–20 (1962)
    • 20. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)
    • 21. Pöschel, J.: On elliptic lower-dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)
    • 22. Rüssmann, H.: Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition. Ergodic Theory Dynam....
    • 23. Siegel, C., Moser, J.: Lectures on celestial mechanics. Die Grundlehren der mathematischen Wissenschaften, Band 187. Springer-Verlag,...
    • 24. Wang, J., You, J.: Boundedness of solutions for non-linear quasi-periodic differential equations with Liouvillean frequency. J. Differ....
    • 25. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Amer. Math. Soc. 369(6), 4251–4274...
    • 26. Wu, H., Xu, X., Zhang, D.: On the ultradifferentiable normalization. Math. Z. 299(1–2), 751–779 (2021)
    • 27. Xu, J.: Persistence of elliptic lower-dimensional invariant tori for small perturbation of degenerate integrable Hamiltonian systems....
    • 28. Xu, X., You, J., Zhou, Q.: Quasiperiodic solutions of NLS with Liouvillean frequencies. Anal. PDE 14(8), 2327–2362 (2021)
    • 29. You, J., Zhou, Q.: Phase transition and semi-global reducibility. Comm. Math. Phys. 330(3), 1095–1113 (2014)
    • 30. Zhang, D., Wu, H.: On the reducibility of two-dimensional quasi-periodic systems with Liouvillean basic frequencies and without non-degeneracy...
    • 31. Zhang, D., Xu, J.: Reducibility of a class of nonlinear quasi-periodic systems with Liouvillean basic frequencies. Ergodic Theory Dynam....
    • 32. Zhang, D., Xu, J., Wu, H., Xu, X.: On the reducibility of linear quasi-periodic systems with Liouvillean basic frequencies and multiple...
    • 33. Zhang, Z., Zhao, Z.: Ballistic transport and absolute continuity of one-frequency Schrödinger operators. Comm. Math. Phys. 351(3), 877–921...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno