Ir al contenido

Documat


Dynamics of a Two-Dimensional Slow–Fast Belousov–Zhabotinsky Model

  • Ruihan Xu [1] ; Ming Sun [1] ; Xiang Zhang [1]
    1. [1] Shanghai Jiao Tong University

      Shanghai Jiao Tong University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº Extra 1, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01139-0
  • Enlaces
  • Resumen
    • For the reduced two-dimensional Belousov–Zhabotinsky slow–fast differential system, the known results are the existence of one limit cycle and its stability for particular values of the parameters. Here, we characterize all dynamics of this system except one degenerate case. The results include global stability of the positive equilibrium, supercritical and subcritical Hopf bifurcations, the existence of a canard explosion and relaxation oscillation, and the coexistence of one nest of two limit cycles with the outer one originating from the supercritical Hopf bifurcation at one canard point and the inner one from the subcritical Hopf bifurcation at another canard point. This last one is a new dynamical phenomenon.

  • Referencias bibliográficas
    • 1. Barzykina, I.: Chemistry and mathematics of the Belousov–Zhabotinsky reaction in a school laboratory. J. Chem. Edu. 97, 1895–1902 (2020)
    • 2. Belousov, B.P.: A Periodic Reaction and its Mechanism, Collection of Short Papers on Radiation Medicine for 1958. Med. Publ, Moscow (1959)....
    • 3. Brøns, M., Bar-Eli, K.: Canard explosion and excitation in a model of the Belousov–Zhabotinskii reaction. J. Phys. Chem. 95(1991), 8706–8713...
    • 4. Cassani, A.,Monteverde, A., Piumetti,M.: Belousov–Zhabotinsky type reactions: the non-linear behavior of chemical systems. J. Math. Chem....
    • 5. Chen, X., Zhang, X.: Dynamics of the predator-prey model with the Sigmoid functional response. Stud. Appl. Math. 147(1), 300–318 (2021)
    • 6. De Maesschalck, P., Dumortier, F., Roussarie, R.: Canard Cycles from Birth to Transition. Springer, Cham (2021)
    • 7. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. UniversiText. Springer, New York (2006)
    • 8. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys...
    • 9. Gray, C.: An analysis of the Belousov–Zhabotinskii reaction, Rose-Hulman Undergraduate. Math. J., 3(1), Article 1 (2002)
    • 10. Györgyi, L., Field, R.J.: A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature 355, 808–810 (1992)
    • 11. Huh, D.S., Choe, Y.M., Park, D.Y., Park, S.H., Zhao, Y.S., Kim, Y.J., Yamaguchi, T.: Controlling the Ru-catalyzed Belousov–Zhabotinsky...
    • 12. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)
    • 13. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points— flod and canard points in two dimensions....
    • 14. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)
    • 15. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical system. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kaman...
    • 16. Llibre, J., Oliveira, R.: On the limit cycle of a Belousov–Zhabotinsky differential systems. Math. Methods Appl. Sci. 45(2), 579–584 (2022)
    • 17. Mitry, J., McCarthy, M., Kopell, N., Wechselberger, M.: Excitable neurons, firing threshold manifolds and canards. J. Math. Neurosci....
    • 18. Rita, T., Christopher, S., Adamatzk, Y.A., Costello, B.D.L., Bull, L.: Dynamic control and information processing in the Belousov–Zhabotinsky...
    • 19. Rotstein, H.G., Wechselberger, M., Kopell, N.: Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate...
    • 20. Su, W., Zhang, X.: Global stability and canard explosions of the predator-prey model with the sigmoid functional response. SIAM J. Appl....
    • 21. Tomita, K., Ito, A., Ohta, T.: Simplified model for Belousov–Zhabotinsky reaction. J. Theor. Biol. 68(4), 459–481 (1977)
    • 22. Tyson, J.J.: The Belousov–Zhabotinsky Reaction. Springer, New York (1976)
    • 23. Ye, Y.: Theory of Limit Cycles, Transl. Math. Monogr. 66, American Mathematical Society Providence, RI (1986)
    • 24. Zhabotinsky, A.M.: Periodical oxidation of malonic acid in solution (a study of the Belousov reaction kinetics). Biofizika 9, 306–311...
    • 25. Zhabotinsky, A.M.: Periodic liquid phase reactions. Proc. Ac. Sci. USSR 157, 392–395 (1964)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno