Ir al contenido

Documat


Properties of the convolution operation in the complexity space and its dual

  • José M. Hernández Morales [1] ; Netzahualcóyotl C. Castañeda-Roldán [1] ; Luz C. Álvarez-Marín [1]
    1. [1] Universidad Tecnológica de la Mixteca

      Universidad Tecnológica de la Mixteca

      México

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 281-299
  • Idioma: inglés
  • DOI: 10.33044/revuma.3402
  • Enlaces
  • Resumen
    • We give the basic properties of discrete convolution in the space of complexity functions and its dual space. Two inequalities are identified, and defined in the general context of an arbitrary binary operation in any weighted quasi-metric space. In that setting, some quasi-metric and convergence consequences of those inequalities are proven. Using convolution, we show a method for building improver functionals in the complexity space. We also consider convolution in three topologies within the dual space, obtaining two topological monoids.

  • Referencias bibliográficas
    • H. Aimar, B. Iaffei, and L. Nitti, On the Macías-Segovia metrization of quasi-metric spaces, Rev. Un. Mat. Argentina 41 no. 2 (1998), 67–75....
    • T. Banakh and A. Ravsky, Quasi-pseudometrics on quasi-uniform spaces and quasimetrization of topological monoids, Topology Appl. 200 (2016),...
    • S. Cobzaș, Functional analysis in asymmetric normed spaces, Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2013. DOI MR Zbl
    • A. Császár, Foundations of general topology, A Pergamon Press Book, The Macmillan Company, New York, 1963. MR Zbl
    • P. Fletcher and W. Hunsaker, Symmetry conditions in terms of open sets, Topology Appl. 45 no. 1 (1992), 39–47. DOI MR Zbl
    • P. Fletcher and W. F. Lindgren, Quasi-uniform spaces, Lecture Notes in Pure and Applied Mathematics 77, Marcel Dekker, New York, 1982. DOI...
    • L. M. García-Raffi, S. Romaguera, and M. P. Schellekens, Applications of the complexity space to the general probabilistic divide and conquer...
    • D. N. Georgiou, A. C. Megaritis, and S. P. Moshokoa, Small inductive dimension and Alexandroff topological spaces, Topology Appl. 168 (2014),...
    • J. Goubault-Larrecq, Non-Hausdorff topology and domain theory, New Mathematical Monographs 22, Cambridge University Press, Cambridge, 2013....
    • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, second ed., Addison-Wesley, Reading, MA, 1994. MR Zbl
    • B. Iaffei and L. Nitti, A unified point of view on boundedness of Riesz type potentials, Rev. Un. Mat. Argentina 59 no. 1 (2018), 99–121....
    • M. Ilkhan and E. E. Kara, On statistical convergence in quasi-metric spaces, Demonstr. Math. 52 no. 1 (2019), 225–236. DOI MR Zbl
    • H.-P. A. Kunzi, Nonsymmetric topology, in Topology with applications (Szekszárd, 1993), Bolyai Soc. Math. Stud. 4, János Bolyai Math. Soc.,...
    • S. G. Matthews, Partial metric topology, in Papers on general topology and applications (Flushing, NY, 1992), Ann. New York Acad. Sci. 728,...
    • L. Nachbin, Topology and order, Van Nostrand Mathematical Studies, No. 4, D. Van Nostrand, Princeton, N.J., 1965. MR Zbl
    • T. Richmond, General topology: an introduction, De Gruyter Textbook, De Gruyter, Berlin, 2020. DOI MR Zbl
    • S. Romaguera and M. Sanchis, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory 103 no. 2 (2000), 292–301....
    • S. Romaguera and M. Schellekens, Quasi-metric properties of complexity spaces, Topology Appl. 98 no. 1-3 (1999), 311–322. DOI MR Zbl
    • W. Rudin, Principles of mathematical analysis, third ed., International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1976....
    • M. Schellekens, The Smyth completion: a common foundation for denotational semantics and complexity analysis, in Mathematical foundations...
    • M. Schellekens, The Smyth completion: a common topological foundation for denotational semantics and complexity analysis, Ph.D. thesis, Carnegie...
    • D. Scott, Outline of a mathematical theory of computation, Tech. Monograph PRG-2, Oxford University Computing Laboratory, Programming Research...
    • D. Scott and C. Strachey, Toward a mathematical semantics for computer languages, Tech. Monograph PRG-6, Oxford University Computing Laboratory,...
    • M. B. Smyth, Completeness of quasi-uniform and syntopological spaces, J. London Math. Soc. (2) 49 no. 2 (1994), 385–400. DOI MR Zbl
    • P. Sunderhauf, The Smyth-completion of a quasi-uniform space, in Semantics of programming languages and model theory (Schloß Dägstuhl, 1991),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno