Ir al contenido

Documat


Sequential optimality conditions for optimization problems with additional abstract set constraints

  • Nadia Soledad Fazzio [1] ; María Daniela Sánchez [1] ; María Laura Schuverdt [1]
    1. [1] Universidad Nacional de La Plata

      Universidad Nacional de La Plata

      Argentina

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 257-279
  • Idioma: inglés
  • DOI: 10.33044/revuma.2260
  • Enlaces
  • Resumen
    • The positive approximate Karush–Kuhn–Tucker sequential condition and the strict constraint qualification associated with this condition for general scalar problems with equality and inequality constraints have recently been introduced. In this paper, we extend them to optimization problems with additional abstract set constraints. We also present an extension of the approximate Karush–Kuhn–Tucker sequential condition and its related strict constraint qualification. Furthermore, we explore the relations between the new constraint qualification and other constraint qualifications known in the literature as Abadie, quasi-normality and the approximate Karush–Kuhn–Tucker regularity constraint qualification. Finally, we introduce an augmented Lagrangian method for solving the optimization problem with abstract set constraints and we show that it is possible to obtain global convergence under the new condition.

  • Referencias bibliográficas
    • J. Abadie, On the Kuhn-Tucker theorem, in Nonlinear Programming (NATO Summer School, Menton, 1964), North-Holland, Amsterdam, 1967, pp. 19–36....
    • P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton, NJ, 2008. DOI...
    • R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, On augmented Lagrangian methods with general lower-level constraints, SIAM...
    • R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence...
    • R. Andreani, N. S. Fazzio, M. L. Schuverdt, and L. D. Secchin, A sequential optimality condition related to the quasi-normality constraint...
    • R. Andreani, W. Gomez, G. Haeser, L. M. Mito, and A. Ramos, On optimality conditions for nonlinear conic programming, Math. Oper. Res. 47...
    • R. Andreani, G. Haeser, M. L. Schuverdt, L. D. Secchin, and P. J. S. Silva, On scaled stopping criteria for a safeguarded augmented Lagrangian...
    • R. Andreani, G. Haeser, L. D. Secchin, and P. J. S. Silva, New sequential optimality conditions for mathematical programs with complementarity...
    • R. Andreani, G. Haeser, and J. M. Martínez, On sequential optimality conditions for smooth constrained optimization, Optimization 60 no. 5...
    • R. Andreani, G. Haeser, M. L. Schuverdt, and P. J. S. Silva, A relaxed constant positive linear dependence constraint qualification and applications,...
    • R. Andreani, J. M. Martínez, A. Ramos, and P. J. S. Silva, A cone-continuity constraint qualification and algorithmic consequences, SIAM J....
    • R. Andreani, J. M. Martinez, and M. L. Schuverdt, On the relation between constant positive linear dependence condition and quasinormality...
    • R. Andreani, J. M. Martínez, and B. F. Svaiter, A new sequential optimality condition for constrained optimization and algorithmic consequences,...
    • R. Andreani, A. Ramos, A. A. Ribeiro, L. D. Secchin, and A. R. Velazco, On the convergence of augmented Lagrangian strategies for nonlinear...
    • R. Bergmann and R. Herzog, Intrinsic formulation of KKT conditions and constraint qualifications on smooth manifolds, SIAM J. Optim. 29 no....
    • D. P. Bertsekas, Nonlinear programming, second ed., Athena Scientific, Belmont, MA, 1999. MR Zbl
    • D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar, Convex analysis and optimization, Athena Scientific, Belmont, MA, 2003. MR Zbl
    • D. P. Bertsekas and A. E. Ozdaglar, Pseudonormality and a Lagrange multiplier theory for constrained optimization, J. Optim. Theory Appl....
    • E. G. Birgin and J. M. Martínez, A box-constrained optimization algorithm with negative curvature directions and spectral projected gradients,...
    • E. G. Birgin and J. M. Martínez, Large-scale active-set box-constrained optimization method with spectral projected gradients, Comput. Optim....
    • E. G. Birgin and J. M. Martínez, Practical augmented Lagrangian methods for constrained optimization, Fundamentals of Algorithms 10, Society...
    • E. G. Birgin, J. M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 no. 4 (2000),...
    • E. G. Birgin, J. M. Martínez, and M. Raydan, Algorithm 813: SPG – software for convex-constrained optimization, ACM Trans. Math. Softw. 27...
    • E. G. Birgin, J. M. Martínez, and M. Raydan, Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal. 23 no. 4 (2003),...
    • E. G. Birgin, J. M. Martínez, and M. Raydan, Spectral projected gradient methods, in Encyclopedia of optimization, Springer, Boston, 2009,...
    • E. Borgens, C. Kanzow, P. Mehlitz, and G. Wachsmuth, New constraint qualifications for optimization problems in Banach spaces based on asymptotic...
    • L. F. Bueno, G. Haeser, F. Lara, and F. N. Rojas, An augmented Lagrangian method for quasi-equilibrium problems, Comput. Optim. Appl. 76 no....
    • L. F. Bueno, G. Haeser, and F. N. Rojas, Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and...
    • J. Dutta, K. Deb, R. Tulshyan, and R. Arora, Approximate KKT points and a proximity measure for termination, J. Global Optim. 56 no. 4 (2013),...
    • W. Fenchel, Convex cones, sets and functions, Logistic Project Report, Department of Mathematics, Princeton University, 1953. Zbl
    • M. L. Flegel, C. Kanzow, and J. V. Outrata, Optimality conditions for disjunctive programs with application to mathematical programs with...
    • G. Giorgi, B. Jimenez, and V. Novo, Approximate Karush–Kuhn–Tucker condition in multiobjective optimization, J. Optim. Theory Appl. 171 no....
    • G. Haeser and M. L. Schuverdt, On approximate KKT condition and its extension to continuous variational inequalities, J. Optim. Theory Appl....
    • M. R. Hestenes, Calculus of variations and optimal control theory, John Wiley & Sons, New York-London-Sydney, 1966. MR Zbl
    • M. R. Hestenes, Optimization theory: The finite dimensional case, Pure and Applied Mathematics, John Wiley & Sons, New York, 1975. MR...
    • C. Kanzow, D. Steck, and D. Wachsmuth, An augmented Lagrangian method for optimization problems in Banach spaces, SIAM J. Control Optim. 56...
    • A. E. Ozdaglar and D. P. Bertsekas, The relation between pseudonormality and quasiregularity in constrained optimization, Optim. Methods Softw....
    • L. Qi and Z. Wei, On the constant positive linear dependence condition and its application to SQP methods, SIAM J. Optim. 10 no. 4 (2000),...
    • A. Ramos, Two new weak constraint qualifications for mathematical programs with equilibrium constraints and applications, J. Optim. Theory...
    • A. Ramos, Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic...
    • R. T. Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. MR Zbl
    • R. T. Rockafellar and R. J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften 317, Springer-Verlag, Berlin, 1998....
    • N. V. Tuyen, Y.-B. Xiao, and T. Q. Son, On approximate KKT optimality conditions for cone-constrained vector optimization problems, J. Nonlinear...
    • W. H. Yang, L.-H. Zhang, and R. Song, Optimality conditions for the nonlinear programming problems on Riemannian manifolds, Pac. J. Optim....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno