Ir al contenido

Documat


The principal small intersection graph of a commutative ring

  • Soheila Khojasteh [1]
    1. [1] Islamic Azad University

      Islamic Azad University

      Irán

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 245-256
  • Idioma: inglés
  • DOI: 10.33044/revuma.3486
  • Enlaces
  • Resumen
    • Let R be a commutative ring with non-zero identity. The small intersection graph of R, denoted by G(R), is a graph with the vertex set V(G(R)), where V(G(R) is the set of all proper non-small ideals of R and two distinct vertices I and J are adjacent if and only if I∩J is not small in R. In this paper, we introduce a certain subgraph PG(R) of G(R), called the principal small intersection graph of R. It is the subgraph of G(R) induced by the set of all proper principal non-small ideals of R. We study the diameter, the girth, the clique number, the independence number and the domination number of PG(R). Moreover, we present some results on the complement of the principal small intersection graph.

  • Referencias bibliográficas
    • S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra 42 no. 4 (2014),...
    • S. Akbari, H. A. Tavallaee, and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl. 11 no. 1 (2012), Paper...
    • D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 no. 7 (2008), 2706–2719. DOI MR Zbl
    • D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
    • S. E. Atani, S. D. Pish Hesari, and M. Khoramdel, A graph associated to proper nonsmall ideals of a commutative ring, Comment. Math. Univ....
    • M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969. MR
    • I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 no. 17 (2009), 5381–5392....
    • B. Csak´ any ´ and G. Pollak´ , The graph of subgroups of a finite group (Russian), Czechoslovak Math. J. 19 (94) no. 2 (1969), 241–247. DOI...
    • F. Heydari, The M-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl. 10 no. 3 (2018), Paper no. 1850038,...
    • S. Khojasteh, The intersection graph of ideals of Zm, Discrete Math. Algorithms Appl. 11 no. 4 (2019), Paper no. 1950037, 12 pp. DOI MR Zbl
    • S. Khojasteh, The complement of the intersection graph of ideals of a poset, J. Algebra Appl. 22 no. 11 (2023), Paper no. 2350236, 13 pp....
    • R. Y. Sharp, Steps in commutative algebra, London Mathematical Society Student Texts 19, Cambridge University Press, Cambridge, 1990. MR Zbl
    • R. Wisbauer, Foundations of module and ring theory, Algebra, Logic and Applications 3, Gordon and Breach Science Publishers, Philadelphia,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno