Ir al contenido

Documat


On the planarity, genus, and crosscap of the weakly zero-divisor graph of commutative rings

  • Nadeem ur Rehman [1] ; Mohd Nazim [1] ; Shabir Ahmad Mir [1]
    1. [1] Aligarh Muslim University

      Aligarh Muslim University

      India

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 213-227
  • Idioma: inglés
  • DOI: 10.33044/revuma.2837
  • Enlaces
  • Resumen
    • Let R be a commutative ring and Z(R) its zero-divisors set. The weakly zero-divisor graph of R, denoted by WΓ(R) is an undirected graph with the nonzero zero-divisors Z(R)∗as vertex set and two distinct vertices x and y are adjacent if and only if there exist a∈Ann(x) and b∈Ann(y) such that ab=0. In this paper, we characterize finite rings R for which the weakly zero-divisor graph WΓ(R) belongs to some well-known families of graphs. Further, we classify the finite rings R for which WΓ(R) is planar, toroidal or double toroidal. Finally, we classify the finite rings R for which the graph WΓ(R) has crosscap at most two.

  • Referencias bibliográficas
    • S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 no. 2 (2004), 847–855. DOI MR Zbl
    • [2] D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159 no. 2 (1993), 500–514. DOI MR Zbl
    • [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 no. 2 (1999), 434–447. DOI MR Zbl
    • [4] T. Asir and K. Mano, Classification of rings with crosscap two class of graphs, Discrete Appl. Math. 265 (2019), 13–21. DOI MR Zbl
    • [5] T. Asir and K. Mano, Classification of non-local rings with genus two zero-divisor graphs, Soft Comput. 24 no. 1 (2020), 237–245, correction...
    • [6] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, Ont., 1969. MR...
    • [7] I. Beck, Coloring of commutative rings, J. Algebra 116 no. 1 (1988), 208–226. DOI MR Zbl
    • [8] N. Bloomfield and C. Wickham, Local rings with genus two zero divisor graph, Comm. Algebra 38 no. 8 (2010), 2965–2980. DOI MR Zbl
    • [9] H.-J. Chiang-Hsieh, Classification of rings with projective zero-divisor graphs, J. Algebra 319 no. 7 (2008), 2789–2802. DOI MR Zbl
    • [10] F. R. DeMeyer, T. McKenzie, and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 no. 2 (2002), 206–214....
    • [11] I. Gitler, E. Reyes, and R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math. 310 no. 3 (2010), 430–441....
    • [12] B. R. McDonald, Finite rings with identity, Pure and Applied Mathematics, Vol. 28, Marcel Dekker, New York, 1974. MR Zbl
    • [13] B. Mohar and C. Thomassen, Graphs on surfaces, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore,...
    • [14] M. J. Nikmehr, A. Azadi, and R. Nikandish, The weakly zero-divisor graph of a commutative ring, Rev. Un. Mat. Argentina 62 no. 1 (2021),...
    • [15] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 no. 4 (2002), 203–211. Zbl
    • [16] H.-J. Wang, Zero-divisor graphs of genus one, J. Algebra 304 no. 2 (2006), 666–678. DOI MR Zbl
    • [17] D. B. West, Introduction to graph theory, 2nd ed., New Delhi: Prentice-Hall of India, 2005. Zbl
    • [18] A. T. White, Graphs, groups and surfaces, North-Holland Mathematics Studies, No. 8, North-Holland, Amsterdam-London; American Elsevier,...
    • [19] C. Wickham, Classification of rings with genus one zero-divisor graphs, Comm. Algebra 36 no. 2 (2008), 325–345. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno