Ir al contenido

Documat


On the Eneström–Kakeya theorem and its various forms in the quaternionic setting

  • Abdullah Mir [1]
    1. [1] University of Kashmir

      University of Kashmir

      India

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 197-211
  • Idioma: inglés
  • DOI: 10.33044/revuma.3504
  • Enlaces
  • Resumen
    • We study the extensions of the classical Eneström–Kakeya theorem and its various generalizations regarding the distribution of zeros of polynomials from the complex to the quaternionic setting. We aim to build upon the previous work by various authors and derive zero-free regions of some special regular functions of a quaternionic variable with restricted coefficients, namely quaternionic coefficients whose real and imaginary components or moduli of the coefficients satisfy suitable inequalities. The obtained results for this subclass of polynomials and slice regular functions produce generalizations of a number of results known in the literature on this subject.

  • Referencias bibliográficas
    • A. Aziz and Q. G. Mohammad, On the zeros of a certain class of polynomials and related analytic functions, J. Math. Anal. Appl. 75 no. 2 (1980),...
    • N. Carney, R. Gardner, R. Keaton, and A. Powers, The Eneström-Kakeya theorem for polynomials of a quaternionic variable, J. Approx. Theory...
    • K. K. Dewan and M. Bidkham, On the Eneström-Kakeya theorem, J. Math. Anal. Appl. 180 no. 1 (1993), 29–36. DOI MR Zbl
    • S. G. Gal and I. Sabadini, On Bernstein and Erdős-Lax’s inequalities for quaternionic polynomials, C. R. Math. Acad. Sci. Paris 353 no. 1...
    • R. B. Gardner and N. K. Govil, Eneström-Kakeya theorem and some of its generalizations, in Current topics in pure and computational complex...
    • R. B. Gardner and M. A. Taylor, Generalization of an Eneström-Kakeya type theorem to the quaternions, Armen. J. Math. 14 (2022), Paper No....
    • G. Gentili and C. Stoppato, Zeros of regular functions and polynomials of a quaternionic variable, Michigan Math. J. 56 no. 3 (2008), 655–667....
    • G. Gentili and D. C. Struppa, A new theory of regular functions of a quaternionic variable, Adv. Math. 216 no. 1 (2007), 279–301. DOI MR Zbl
    • G. Gentili and D. C. Struppa, On the multiplicity of zeroes of polynomials with quaternionic coefficients, Milan J. Math. 76 (2008), 15–25....
    • A. Joyal, G. Labelle, and Q. I. Rahman, On the location of zeros of polynomials, Canad. Math. Bull. 10 (1967), 53–63. DOI MR Zbl
    • T. Y. Lam, A first course in noncommutative rings, Graduate Texts in Mathematics 131, Springer-Verlag, New York, 1991. DOI MR Zbl
    • M. Marden, Geometry of polynomials, second ed., Mathematical Surveys 3, American Mathematical Society, Providence, RI, 1966. MR Zbl
    • G. V. Milovanović, D. S. Mitrinović, and T. M. Rassias, Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, River...
    • I. Niven, Equations in quaternions, Amer. Math. Monthly 48 (1941), 654–661. DOI MR Zbl
    • I. Niven, The roots of a quaternion, Amer. Math. Monthly 49 (1942), 386–388. DOI MR Zbl
    • R. Serodio and L.-S. Siu, Zeros of quaternion polynomials, Appl. Math. Lett. 14 no. 2 (2001), 237–239. DOI MR Zbl
    • A. Sudbery, Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 no. 2 (1979), 199–225. DOI MR Zbl
    • D. Tripathi, A note on Eneström-Kakeya theorem for a polynomial with quaternionic variable, Arab. J. Math. 9 no. 3 (2020), 707–714. DOI MR...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno