Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Distance Laplacian eigenvalues of graphs, and chromatic and independence number
Shariefuddin Pirzada
[1]
;
Saleem Khan
[1]
[1]
University of Kashmir
University of Kashmir
India
Localización:
Revista de la Unión Matemática Argentina
,
ISSN
0041-6932,
ISSN-e
1669-9637,
Vol. 67, Nº. 1, 2024
,
págs.
145-159
Idioma:
inglés
DOI
:
10.33044/revuma.3235
Enlaces
Texto completo
Referencias bibliográficas
M. Ahanjideh, S. Akbari, M. H. Fakharan, and V. Trevisan, Laplacian eigenvalue distribution and graph parameters, Linear Algebra Appl. 632...
M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 no. 1 (2013), 21–33. DOI MR Zbl
M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J. 64(139) no. 3 (2014),...
M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat 31 no. 9 (2017), 2545–2555. DOI MR Zbl
D. M. Cardoso, D. P. Jacobs, and V. Trevisan, Laplacian distribution and domination, Graphs Combin. 33 no. 5 (2017), 1283–1295. DOI MR Zbl
D. Cvetković, P. Rowlinson, and S. Simic, An introduction to the theory of graph spectra, London Mathematical Society Student Texts 75, Cambridge...
J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 no....
R. Grone, R. Merris, and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 no. 2 (1990), 218–238. DOI MR Zbl
J. M. Guo and T. S. Wang, A relation between the matching number and Laplacian spectrum of a graph, Linear Algebra Appl. 325 no. 1-3 (2001),...
S. T. Hedetniemi, D. P. Jacobs, and V. Trevisan, Domination number and Laplacian eigenvalue distribution, European J. Combin. 53 (2016), 66–71....
Q. Liu, The Laplacian spectrum of corona of two graphs, Kragujevac J. Math. 38 no. 1 (2014), 163–170. DOI MR
M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Dover, New York, 1992. MR
R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Portugal. Math. 48 no. 3 (1991), 345–349. MR Zbl...
S. Pirzada, An introduction to graph theory, Universities Press, Hyderabad, India, 2012.
S. Pirzada and S. Khan, On distance Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl. 625 (2021), 44–54. DOI...
S. Pirzada and S. Khan, On the sum of distance Laplacian eigenvalues of graphs, Tamkang J. Math. 54 no. 1 (2023), 83–91. DOI MR Zbl
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Facebook
Twitter
Opciones de entorno
Sugerencia / Errata
©
2008-2024
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar