Ir al contenido

Documat


Distance Laplacian eigenvalues of graphs, and chromatic and independence number

  • Shariefuddin Pirzada [1] ; Saleem Khan [1]
    1. [1] University of Kashmir

      University of Kashmir

      India

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 145-159
  • Idioma: inglés
  • DOI: 10.33044/revuma.3235
  • Enlaces
  • Referencias bibliográficas
    • M. Ahanjideh, S. Akbari, M. H. Fakharan, and V. Trevisan, Laplacian eigenvalue distribution and graph parameters, Linear Algebra Appl. 632...
    • M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl. 439 no. 1 (2013), 21–33. DOI MR Zbl
    • M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czechoslovak Math. J. 64(139) no. 3 (2014),...
    • M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat 31 no. 9 (2017), 2545–2555. DOI MR Zbl
    • D. M. Cardoso, D. P. Jacobs, and V. Trevisan, Laplacian distribution and domination, Graphs Combin. 33 no. 5 (2017), 1283–1295. DOI MR Zbl
    • D. Cvetković, P. Rowlinson, and S. Simic, An introduction to the theory of graph spectra, London Mathematical Society Student Texts 75, Cambridge...
    • J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 no....
    • R. Grone, R. Merris, and V. S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 no. 2 (1990), 218–238. DOI MR Zbl
    • J. M. Guo and T. S. Wang, A relation between the matching number and Laplacian spectrum of a graph, Linear Algebra Appl. 325 no. 1-3 (2001),...
    • S. T. Hedetniemi, D. P. Jacobs, and V. Trevisan, Domination number and Laplacian eigenvalue distribution, European J. Combin. 53 (2016), 66–71....
    • Q. Liu, The Laplacian spectrum of corona of two graphs, Kragujevac J. Math. 38 no. 1 (2014), 163–170. DOI MR
    • M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Dover, New York, 1992. MR
    • R. Merris, The number of eigenvalues greater than two in the Laplacian spectrum of a graph, Portugal. Math. 48 no. 3 (1991), 345–349. MR Zbl...
    • S. Pirzada, An introduction to graph theory, Universities Press, Hyderabad, India, 2012.
    • S. Pirzada and S. Khan, On distance Laplacian spectral radius and chromatic number of graphs, Linear Algebra Appl. 625 (2021), 44–54. DOI...
    • S. Pirzada and S. Khan, On the sum of distance Laplacian eigenvalues of graphs, Tamkang J. Math. 54 no. 1 (2023), 83–91. DOI MR Zbl

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno