Ir al contenido

Documat


Gorenstein properties of split-by-nilpotent extension algebras

  • Pamela Suarez [1]
    1. [1] Universidad Nacional de Mar del Plata

      Universidad Nacional de Mar del Plata

      Argentina

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 137-144
  • Idioma: inglés
  • DOI: 10.33044/revuma.3303
  • Enlaces
  • Resumen
    • Let A be a finite-dimensional k-algebra over an algebraically closed field k. In this note, we study the Gorenstein homological properties of a split-by-nilpotent extension algebra. Let R be a split-by-nilpotent extension of A. We provide sufficient conditions to ensure when a Gorenstein-projective module over A induces a similar structure over R. We also study when a Gorenstein-projective R-module induces a Gorenstein-projective A-module. Moreover, we study the relationship between the Gorensteinness of A and R.

  • Referencias bibliográficas
    • I. Assem and N. Marmaridis, Tilting modules over split-by-nilpotent extensions, Comm. Algebra 26 no. 5 (1998), 1547–1555. DOI MR Zbl
    • I. Assem, D. Simson, and A. Skowronski, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society...
    • M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. no. 94 (1969). DOI MR Zbl
    • L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math....
    • A. Beligiannis and I. Reiten, Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc. 188 no. 883 (2007). DOI MR Zbl
    • X.-W. Chen, Singularity categories, Schur functors and triangular matrix rings, Algebr. Represent. Theory 12 no. 2-5 (2009), 181–191. DOI...
    • X.-W. Chen, D. Shen, and G. Zhou, The Gorenstein-projective modules over a monomial algebra, Proc. Roy. Soc. Edinburgh Sect. A 148 no. 6 (2018),...
    • E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 no. 4 (1995), 611–633. DOI MR Zbl
    • E. E. Enochs and O. M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin, 2000....
    • C. Geiß and I. Reiten, Gentle algebras are Gorenstein, in Representations of algebras and related topics, Fields Inst. Commun. 45, Amer. Math....
    • D. Happel, On Gorenstein algebras, in Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math....
    • B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 no. 1 (2007), 123–151. DOI MR Zbl
    • M. Lu, Gorenstein properties of simple gluing algebras, Algebr. Represent. Theory 22 no. 3 (2019), 517–543. DOI MR Zbl
    • R. Marczinzik, On stable modules that are not Gorenstein projective, 2017. arXiv:1709.01132v3 [math.RT].
    • C. M. Ringel, The Gorenstein projective modules for the Nakayama algebras. I, J. Algebra 385 (2013), 241–261. DOI MR Zbl
    • C. M. Ringel and P. Zhang, Gorenstein-projective and semi-Gorenstein-projective modules, Algebra Number Theory 14 no. 1 (2020), 1–36. DOI...
    • P. Suarez, Split-by-nilpotent extensions and support τ-tilting modules, Algebr. Represent. Theory 23 no. 6 (2020), 2295–2313. DOI MR Zbl
    • B.-L. Xiong and P. Zhang, Gorenstein-projective modules over triangular matrix Artin algebras, J. Algebra Appl. 11 no. 4 (2012), 1250066,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno