Ir al contenido

Documat


Poincaré duality for Hopf algebroids

  • Sophie Chemla [1]
    1. [1] Sorbonne Université, Université de Paris, CNRS, Institut de Mathématiques de Jussieu-Paris, France
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 123-136
  • Idioma: inglés
  • DOI: 10.33044/revuma.2832
  • Enlaces
  • Resumen
    • We prove a twisted Poincaré duality for (full) Hopf algebroids with bijective antipode. As an application, we recover the Hochschild twisted Poincaré duality of van den Bergh. We also get a Poisson twisted Poincaré duality, which was already stated for oriented Poisson manifolds by Chen et al.

  • Referencias bibliográficas
    • M. van den Bergh, A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 no. 5 (1998), 1345–1348....
    • G. Böhm, Hopf algebroids, in Handbook of Algebra, vol. 6, Elsevier/North-Holland, Amsterdam, 2009, pp. 173–235. DOI MR Zbl
    • G. Böhm and K. Szlachanyi, Hopf algebroids with bijective antipodes: axioms, integrals, and duals, J. Algebra 274 no. 2 (2004), 708–750. DOI...
    • A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, and F. Ehlers, Algebraic D-modules, Perspectives in Mathematics 2, Academic Press,...
    • J.-L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 no. 1 (1988), 93–114. MR Zbl Available at Project...
    • S. Chemla, Poincaré duality for k-A Lie superalgebras, Bull. Soc. Math. France 122 no. 3 (1994), 371–397. MR Zbl Available at Numdam.
    • S. Chemla, A duality property for complex Lie algebroids, Math. Z. 232 no. 2 (1999), 367–388. DOI MR Zbl
    • S. Chemla, F. Gavarini, and N. Kowalzig, Duality features of left Hopf algebroids, Algebr. Represent. Theory 19 no. 4 (2016), 913–941. DOI...
    • X. Chen, L. Liu, S. Yu, and J. Zeng, Batalin-Vilkovisky algebra structure on Poisson manifolds with diagonalizable modular symmetry, J. Geom....
    • S. Evens, J.-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math....
    • A. Fröhlich, The Picard group of noncommutative rings, in particular of orders, Trans. Amer. Math. Soc. 180 (1973), 1–45. DOI MR Zbl
    • J. Huebschmann, Poisson cohomology and quantization, J. Reine Angew. Math. 408 (1990), 57–113. DOI MR Zbl
    • N. Jacobson, Basic Algebra. II, W. H. Freeman, San Francisco, CA, 1980. MR Zbl
    • M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs 217, American Mathematical Society, Providence, RI,...
    • Y. Kosmann-Schwarzbach, Poisson manifolds, Lie algebroids, modular classes: a survey, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008),...
    • J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque no. S131 (1985), 257–271. MR Zbl Available at Numdam.
    • N. Kowalzig, Hopf algebroids and their cyclic theory, Ph.D. thesis, Utrecht University, Utrecht, Netherlands, 2009. Available at Utrecht University...
    • N. Kowalzig and U. Krahmer, Duality and products in algebraic (co)homology theories, J. Algebra 323 no. 7 (2010), 2063–2081. DOI MR Zbl
    • N. Kowalzig and H. Posthuma, The cyclic theory of Hopf algebroids, J. Noncommut. Geom. 5 no. 3 (2011), 423–476. DOI MR Zbl
    • S. Launois and L. Richard, Twisted Poincaré duality for some quadratic Poisson algebras, Lett. Math. Phys. 79 no. 2 (2007), 161–174. DOI MR...
    • J. Luo, S.-Q. Wang, and Q.-S. Wu, Twisted Poincaré duality between Poisson homology and Poisson cohomology, J. Algebra 442 (2015), 484–505....
    • K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J. 73 no. 2 (1994), 415–452. DOI MR Zbl
    • G. S. Rinehart, Differential forms on general commutative algebras, Trans. Amer. Math. Soc. 108 (1963), 195–222. DOI MR Zbl
    • P. Schauenburg, Duals and doubles of quantum groupoids (×R-Hopf algebras), in New trends in Hopf algebra theory (La Falda, 1999), Contemp....
    • M. Takeuchi, Groups of algebras over A⊗A, J. Math. Soc. Japan 29 no. 3 (1977), 459–492. DOI MR Zbl
    • P. Xu, Quantum groupoids, Comm. Math. Phys. 216 no. 3 (2001), 539–581. DOI MR Zbl
    • A. Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 no. 1 (1992), 41–84. DOI MR Zbl
    • C. Zhu, Twisted Poincaré duality for Poisson homology and cohomology of affine Poisson algebras, Proc. Amer. Math. Soc. 143 no. 5 (2015),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno