Ir al conteni
d
o
B
uscar
R
evistas
T
esis
Libr
o
antiguo
Co
n
gresos
A
u
tores
Ayuda
Cambiar idioma
Idioma
català
Deutsch
English
español
euskara
français
galego
italiano
português
română
Cambiar
Spectrality of planar Moran–Sierpinski-type measures
Qian Li
[1]
;
Min-Min Zhang
[2]
[1]
Huazhong University of Science and Technology
Huazhong University of Science and Technology
China
[2]
Anhui University of Technology
Anhui University of Technology
China
Localización:
Revista de la Unión Matemática Argentina
,
ISSN
0041-6932,
ISSN-e
1669-9637,
Vol. 67, Nº. 1, 2024
,
págs.
65-80
Idioma:
inglés
DOI
:
10.33044/revuma.2932
Enlaces
Texto completo
Referencias bibliográficas
L.-X. An and X.-G. He, A class of spectral Moran measures, J. Funct. Anal. 266 no. 1 (2014), 343–354. DOI MR Zbl.
L.-X. An, X.-G. He, and K.-S. Lau, Spectrality of a class of infinite convolutions, Adv. Math. 283 (2015), 362–376. DOI MR Zbl.
L.-X. An, X.-G. He, and H.-X. Li, Spectrality of infinite Bernoulli convolutions, J. Funct. Anal. 269 no. 5 (2015), 1571–1590. DOI MR Zbl.
L. An, X. Fu, and C.-K. Lai, On spectral Cantor-Moran measures and a variant of Bourgain’s sum of sine problem, Adv. Math. 349 (2019), 84–124....
L. An and C. Wang, On self-similar spectral measures, J. Funct. Anal. 280 no. 3 (2021), Paper No. 108821, 31 pp. DOI MR Zbl.
X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 no. 3-4 (2012), 1681–1693. DOI MR Zbl.
X.-R. Dai, Spectra of Cantor measures, Math. Ann. 366 no. 3-4 (2016), 1621–1647. DOI MR Zbl.
X.-R. Dai, X.-Y. Fu, and Z.-H. Yan, Spectrality of self-affine Sierpinski-type measures on R², Appl. Comput. Harmon. Anal. 52 (2021), 63–81....
X.-R. Dai, X.-G. He, and K.-S. Lau, On spectral N-Bernoulli measures, Adv. Math. 259 (2014), 511–531. DOI MR Zbl.
Q.-R. Deng and X.-Y. Wang, On the spectra of self-affine measures with three digits, Anal. Math. 45 no. 2 (2019), 267–289. DOI MR Zbl.
Q.-R. Deng, On the spectra of Sierpinski-type self-affine measures, J. Funct. Anal. 270 no. 12 (2016), 4426–4442. DOI MR Zbl.
Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 no. 5 (2015), 1310–1326. DOI MR Zbl.
D. E. Dutkay, D. Han, and Q. Sun, On the spectra of a Cantor measure, Adv. Math. 221 no. 1 (2009), 251–276. DOI MR Zbl.
D. E. Dutkay, J. Haussermann, and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 no. 2 (2019),...
K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley & Sons, Chichester, 1990. MR Zbl.
Y.-S. Fu, X.-G. He, and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl. (9) 116 (2018), 105–131....
B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101–121....
L. He and X.-G. He, On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal. 272 no. 5 (2017), 1980–2004. DOI MR Zbl.
X.-G. He, M.-w. Tang, and Z.-Y. Wu, Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures, J. Funct....
T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 no. 2 (2008), 554–567. DOI MR Zbl.
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 no. 5 (1981), 713–747. DOI MR Zbl.
P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L²-spaces, J. Anal. Math. 75 (1998), 185–228. DOI MR Zbl.
M. N. Kolountzakis and M. Matolcsi, Complex Hadamard matrices and the spectral set conjecture, Collect. Math. Vol. Extra (2006), 281–291....
M. N. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 no. 3 (2006), 519–528. DOI MR Zbl.
I. Laba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 no. 2 (2002), 409–420. DOI MR Zbl.
J.-L. Li, Spectra of a class of self-affine measures, J. Funct. Anal. 260 no. 4 (2011), 1086–1095. DOI MR Zbl.
J. Li, Spectrality of a class of self-affine measures with decomposable digit sets, Sci. China Math. 55 no. 6 (2012), 1229–1242. DOI MR Zbl.
J. Li and Z. Wen, Spectrality of planar self-affine measures with two-element digit set, Sci. China Math. 55 no. 3 (2012), 593–605. DOI MR...
M. Matolcsi, Fuglede’s conjecture fails in dimension 4, Proc. Amer. Math. Soc. 133 no. 10 (2005), 3021–3026. DOI MR Zbl.
T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 no. 2-3 (2004), 251–258. DOI MR Zbl.
Z.-Y. Wang and X.-H. Dong, Spectrality of Sierpinski-Moran measures, Monatsh. Math. 195 no. 4 (2021), 743–761. DOI MR Zbl.
Z.-H. Yan, Spectral properties of a class of Moran measures, J. Math. Anal. Appl. 470 no. 1 (2019), 375–387. DOI MR Zbl.
Acceso de usuarios registrados
Identificarse
¿Olvidó su contraseña?
¿Es nuevo?
Regístrese
Ventajas de registrarse
Mi Documat
S
elección
Opciones de artículo
Seleccionado
Opciones de compartir
Facebook
Twitter
Opciones de entorno
Sugerencia / Errata
©
2008-2024
Fundación Dialnet
· Todos los derechos reservados
Accesibilidad
Aviso Legal
Coordinado por:
I
nicio
B
uscar
R
evistas
T
esis
Libr
o
antiguo
A
u
tores
Ayuda
R
e
gistrarse
¿En qué podemos ayudarle?
×
Buscar en la ayuda
Buscar