Ir al contenido

Documat


Coordinate ring of $\mathrm{SL}_2$-character varieties.

  • Vicente Muñoz [1] ; Jesús Martín Ovejero [2]
    1. [1] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

    2. [2] Universidad de Salamanca

      Universidad de Salamanca

      Salamanca, España

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 67, Nº. 1, 2024, págs. 47-64
  • Idioma: inglés
  • DOI: 10.33044/revuma.3192
  • Enlaces
  • Resumen
    • We determine generators of the coordinate ring of SL2-character varieties. In the case of the free group F3 we obtain an explicit equation of the SL2-character variety. For free groups Fk, we find transcendental generators. Finally, for the case of the 2-torus, we get an explicit equation of the SL2-character variety and use the description to compute their E-polynomials.

  • Referencias bibliográficas
    • C. Ashley, J.-P. Burelle, and S. Lawton, Rank 1 character varieties of finitely presented groups, Geom. Dedicata 192 (2018), 1–19. DOI MR...
    • K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 no. 3 (1988), 361–382. MR Zbl. Available at http://projecteuclid.org/euclid.jdg/1214442469.
    • M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 no. 1 (1983), 109–146....
    • P. Deligne, Théorie de Hodge. II, Inst. Hautes Etudes Sci. Publ. Math. no. 40 (1971), 5–57. MR Zbl. Available at [http://www.numdam.org/item?id=PMIHES...
    • C. Florentino and S. Lawton, Singularities of free group character varieties, Pacific J. Math. 260 no. 1 (2012), 149–179. DOI MR Zbl.
    • C. Florentino, A. Nozad, and A. Zamora, Serre polynomials of SL 𝑛 n ​ - and P GL 𝑛 n ​ -character varieties of free groups,...
    • W. M. Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, in Handbook of Teichmüller theory. Vol. II, IRMA Lect....
    • N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 no. 1 (1987), 59–126. DOI MR Zbl.
    • T. Kitano and T. Morifuji, Twisted Alexander polynomials for irreducible SL(2, C)-representations of torus knots, Ann. Sc. Norm. Super. Pisa...
    • S. Lawton, Minimal affine coordinates for SL(3, C) character varieties of free groups, J. Algebra 320 no. 10 (2008), 3773–3810. DOI MR Zbl.
    • S. Lawton and V. Muñoz, E-polynomial of the SL(3, C)-character variety of free groups, Pacific J. Math. 282 no. 1 (2016), 173–202. DOI MR...
    • J. D. Lewis, A survey of the Hodge conjecture, second ed., CRM Monograph Series 10, American Mathematical Society, Providence, RI, 1999. DOI...
    • M. Logares, V. Muñoz, and P. E. Newstead, Hodge polynomials of SL(2, C)-character varieties for curves of small genus, Rev. Mat. Complut....
    • A. Lubotzky and A. R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 no. 336 (1985). DOI MR Zbl.
    • J. Martín-Morales and A. M. Oller-Marcen, Combinatorial aspects of the character variety of a family of one-relator groups, Topology Appl....
    • J. Martínez and V. Muñoz, E-polynomials of SL(2, C)-character varieties of complex curves of genus 3, Osaka J. Math. 53 no. 3 (2016), 645–681....
    • J. Martínez and V. Muñoz, E-polynomials of the SL(2, C)-character varieties of surface groups, Int. Math. Res. Not. IMRN 2016 no. 3 (2016),...
    • V. Muñoz, The SL(2, C)-character varieties of torus knots, Rev. Mat. Complut. 22 no. 2 (2009), 489–497. DOI MR Zbl.
    • V. Muñoz and J. Porti, Geometry of the SL(3, C)-character variety of torus knots, Algebr. Geom. Topol. 16 no. 1 (2016), 397–426. DOI MR Zbl.
    • C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Etudes Sci. Publ. Math....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno