Ir al contenido

Documat


Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition

  • Maxim Gurevich [2] ; Chuijia Wang [1]
    1. [1] Chinese University of Hong Kong

      Chinese University of Hong Kong

      RAE de Hong Kong (China)

    2. [2] Department of Mathematics, Technion – Israel Institute of Technology, Haifa, Israel
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00972-0
  • Enlaces
  • Resumen
    • We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of Sn, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of q-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.

  • Referencias bibliográficas
    • Björner, Anders: Brenti, Francesco: Combinatorics of Coxeter groups, Graduate Texts in Mathematics. Springer, New York (2005)
    • Blundell, Charles, Buesing, Lars, Davies, Alex, Veličković, Petar, Williamson, Geordie: Towards combinatorial invariance for Kazhdan–Lusztig...
    • Brundan, Jonathan, Kleshchev, Alexander: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222(6), 1883–1942 (2009)
    • Brenti, Francesco: Kazhdan-Lusztig polynomials: history problems, and combinatorial invariance. Sém. Lothar. Combin., 49 . B49b, 30 (2002/04)
    • Brenti, Francesco, Some open problems on Coxeter groups and unimodality. In Open Problems in Algebraic Combinatorics, volume to appear of...
    • Dyer, M.J., Lehrer, G.I.: On positivity in Hecke algebras. Geom. Dedicata. 35(1–3), 115–125 (1990)
    • Davies, Alex, Veličković, Petar, Buesing, Lars, Blackwell, Sam, Zheng, Daniel, Tomašev, Nenad, Tanburn, Richard, Battaglia, Peter, Blundell,...
    • Dyer, Matthew John: Hecke algebras and reflections in Coxeter groups. PhD thesis, University of Sydney Department of Mathematics (1987)
    • Dyer, M.J.: Hecke algebras and shellings of Bruhat intervals. Compositio Math. 89(1), 91–115 (1993)
    • Grojnowski, Ian, Haiman, Mark: Affine Hecke algebras and positivity of LLT and Macdonald polynomials. preprint (2007)
    • Kazhdan, D., Lusztig, George: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)
    • Kleshchev, Alexander, Ram, Arun: Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words. Math. Ann. 349(4),...
    • Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3(2), 447–498 (1990)
    • Soergel, Wolfgang: Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules. Represent. Theory 1, 83–114 (1997)
    • Zelevinskiĭ, A. V.: The p-adic analogue of the Kazhdan-Lusztig conjecture. Funktsional. Anal. i Prilozhen., 15(2), 9–21, 96 (1981)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno