Ir al contenido

Documat


Toric orbifolds associated with partitioned weight polytopes in classical types

  • Tatsuya Horiguchi [1] ; Mikiya Masuda [3] ; John Shareshian [4] ; Jongbaek Song [2]
    1. [1] National Institute Of Technology

      National Institute Of Technology

      Japón

    2. [2] Pusan National University

      Pusan National University

      Corea del Sur

    3. [3] Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, Japan
    4. [4] Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, USA
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 30, Nº. 5, 2024
  • Idioma: inglés
  • DOI: 10.1007/s00029-024-00977-9
  • Enlaces
  • Resumen
    • Given a root system Φ of type An, Bn, Cn, or Dn in Euclidean space E, let W be the associated Weyl group. For a point p ∈ E not orthogonal to any of the roots in Φ, we consider the W-permutohedron PW , which is the convex hull of the Worbit of p. The representation of W on the rational cohomology ring H∗(XΦ) of the toric variety X Φ associated to (the normal fan to) PW has been studied by various authors. Let {s1,...,sn} be a complete set of simple reflections in W. For K ⊆ [n], let WK be the standard parabolic subgroup of W generated by {sk : k ∈ K}. We show that the fixed subring H∗(XΦ)WK is isomorphic to the cohomology ring of the toric variety XΦ (K) associated to a polytope obtained by intersecting PW with half-spaces bounded by reflecting hyperplanes for the given generators of WK . We also obtain explicit formulas for h-vectors of these polytopes. By a result of Balibanu–Crooks, the cohomology rings H∗(X Φ (K)) are isomorphic with cohomology rings of certain regular Hessenberg varieties.

  • Referencias bibliográficas
    • Abe, H.: Young diagrams and intersection numbers for toric manifolds associated with Weyl chambers. Electron. J. Combin. 22(2), 24 (2015)
    • Ardila, F., Castillo, F., Eur, C., Postnikov, A.: Coxeter submodular functions and deformations of Coxeter permutahedra. Adv. Math. 365, 107039,...
    • Abe, H., Harada, M., Horiguchi, T., Masuda, M.: The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A. Int. Math. Res....
    • Abe, T., Horiguchi, T., Masuda, M., Murai, S., Sato, T.: Hessenberg varieties and hyperplane arrangements. J. Reine Angew. Math. 764, 241–286...
    • Brosnan, P., Chow, T.Y.: Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. Adv. Math....
    • Balibanu, A., Crooks, P.: Perverse sheaves and the cohomology of regular Hessenberg varieties. Transform. Groups (2022). https://doi.org/10.1007/s00031-022-09755-3
    • Bifet, E., De Concini, C., Procesi, C.: Cohomology of regular embeddings. Adv. Math. 82(1), 1–34 (1990)
    • Blume, M.: Toric orbifolds associated to Cartan matrices. Ann. Inst. Fourier (Grenoble) 65(2), 863–901 (2015)
    • Danilov, V.I.: The geometry of toric varieties. Uspekhi Mat. Nauk 33, 85–134 (1978)
    • Dolgachev, I., Lunts, V.: A character formula for the representation of a Weyl group in the cohomology of the associated toric variety. J....
    • De Mari, F., Procesi, C., Shayman, M.A.: Hessenberg varieties. Trans. Amer. Math. Soc. 332(2), 529–534 (1992)
    • De Mari, F., Shayman, M.A.: Generalized Eulerian numbers and the topology of the Hessenberg variety of a matrix. Acta Appl. Math. 12(3), 213–235...
    • Ewald, G.: Spherical complexes and nonprojective toric varieties. Discrete Comput. Geom. 1(2), 115–122 (1986)
    • Fulton, W.: Introduction to toric varieties. Annals of Math. Studies, vol. 131. Princeton Univ. Press, Princeton, NJ (1993)
    • Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83...
    • Huh, J.: Rota’s conjecture and positivity of algebraic cycles in permutohedral varieties. ProQuest LLC, Ann Arbor, MI, (2014). Thesis (Ph.D.)–University...
    • Humphreys, J E.: Introduction to Lie algebras and representation theory. Springer-Verlag, New York-Berlin, (1972). Graduate Texts in Mathematics,...
    • Humphreys, J.E.: Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,...
    • Insko, E., Yong, A.: Patch ideals and Peterson varieties. Transform. Groups 17(4), 1011–1036 (2012)
    • Jurkiewicz, J.M.: Chow ring of projective nonsingular torus embedding. Colloq. Math. 43(2), 261–270 (1980)
    • Kamnitzer, J.: Mirkovi´c-Vilonen cycles and polytopes. Ann. of Math. (2) 171(1), 245–294 (2010)
    • Klyachko, A.A.: Orbits of a maximal torus on a flag space. Funct. Anal. Appl. 19(1), 65–66 (1985)
    • Kostant, B.: Flag manifold quantum cohomology, the toda lattice, and the representation with highest weight ρ. Selecta Math. (N.S.) 2(1),...
    • Lehrer, G.I.: Rational points and Coxeter group actions on the cohomology of toric varieties. Ann. Inst. Fourier (Grenoble) 58(2), 671–688...
    • Maakestad, H.: Resultants and symmetric products. Comm. Algebra 33(11), 4105–4114 (2005)
    • Precup, M.: The Betti numbers of regular Hessenberg varieties are palindromic. Transform. Groups 23(2), 491–499 (2018)
    • Claudio Procesi The toric variety associated to Weyl chambers. In Mots, Lang. Raison. Calc., pages 153–161. Hermès, Paris, (1990)
    • Postnikov, A., Reiner, V., Williams, L.: Faces of generalized permutohedra. Doc. Math. 13, 207–273 (2008)
    • Song, J.: Toric surfaces with symmetries by reflections. Proc. Steklov Inst. Math. 318(1), 161–174 (2022)
    • Stanley, R.P.: A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111(1), 166–194 (1995)
    • Stembridge, J.R.: Eulerian numbers, tableaux, and the Betti numbers of a toric variety. Discrete Math. 99(1–3), 307–320 (1992)
    • Stembridge, J.R.: Some permutation representations of Weyl groups associated with the cohomology of toric varieties. Adv. Math. 106(2), 244–301...
    • Shareshian, J., Wachs, M.L.: Chromatic quasisymmetric functions. Adv. Math. 295, 497–551 (2016)
    • Teff, Nicholas: Representations on Hessenberg varieties and Young’s rule. In 23rd International Conference on Formal Power Series and Algebraic...
    • Tymoczko, Julianna S.: Permutation actions on equivariant cohomology of flag varieties. Toric topology, 365–384, Contemp. Math., 460, Amer....
    • Vilonen, Kari, Xue, Ting: A note on Hessenberg varieties. arXiv:2101.08652

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno